首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
本文给出了十二种矩形流道太阳能空气集热器的数学模型。基于对这些模型的计算结果,作者分析了各种空气集热器的热性能,详细比较了每种空气集热器的适用条件。  相似文献   

2.
为了提高集热器的集热效率和减小占地面积,对传统的平板集热器流道进行改进,把整体空腔流道改为蛇形流道.利用CFD软件对蛇形流道太阳能平板集热器进行数值模拟,分析集热器入口流速对集热器出口温度和集热效率的影响.结果表明:蛇形流道太阳能平板集热器内部特殊的流道为空气提供有效的漩涡生成场所;入口速度越大,漩涡越大;相邻两气腔内的漩涡越近,集热效果越好.随着入口流速的增加,集热器效率明显增加直到稳定.该模型下的集热效率最高能达到0.76.集热器出口温度随入口流速的增加逐渐降低直到稳定,稳定温度下对应的最低流速为4 m/s,并且出口温度随辐射强度的增加而增大.  相似文献   

3.
针对两种不同结构的双效太阳能平板集热器,建立上流道和双流道两种结构双效集热器的空气集热模型,以热力学第一定律和第二定律为基础,综合考虑空气集热效率和净有效能的情况下,研究了两种空气流道结构条件下,流道高度对集热器性能的影响.结果表明,对于上流道结构的空气集热器,流道高度为15mm时,热效率和净有效能均最高,15mm是上流道式集热器的适宜流道高度;对于双流道结构的空气集热器,上、下流道高度均为15mm至25mm间时热效率和获得的净有效能最高.  相似文献   

4.
通过数值求解基于雷诺时均的三维定常粘性N-S方程及能量方程,改变结构、特性及运行参数,对折流板型太阳能空气集热器进行了数值优化,模拟结果表明:折流板的引入可有效提高集热效率,同时对于特定尺度的折流板集热器,存在最优分割腔数;增加集热器上部盖板的保温能力可有效提高集热效率,实际使用中推荐保温能力较好的双玻盖板或适当增加空气间层厚度;集热器的热损失以对流散热占主导,辐射散热为次要因素;运行参数如气温、日照强度等对集热器进出口温升影响显著,但对集热效率影响较小。  相似文献   

5.
为研究波高对冷热双流道板式换热器的影响,对不同紊流状态下正弦人字形换热器进行了三维建模,利用 ANSYS Fluent 软件对冷热流道内换热器的换热和流动特性进行了数值模拟分析,得到了不同湍流强度下换热器内部温度、速度、压力场的分布特性,并分析了典型波纹倾角、波距情况下,不同波高对换热器平均壁面努塞尔系数(Nu)及摩擦因子的影响。结果表明:①雷诺数增加使得换热器内部热交换性能提升,换热死区面积减小,压力增大;②入口流速的增加使得 Nu 随之增大,但也使沿程阻力增加,入口流速 0.4 ~ 0.8 m/s时换热器换热性能良好;③ Nu 随波高呈线性增加趋势,考虑到沉淀结垢及摩擦因子随波高变化,建议波高4 ~ 5 mm 为宜。  相似文献   

6.
两种太阳能空气集热器性能比较研究   总被引:1,自引:1,他引:0  
为了研究平板式太阳能空气集热器的集热效率,对不同形状吸热板的集热效率进行了动态测试.结果表明,使用穿孔吸热板的平板太阳能空气集热器的出风口温度和集热效率均明显高于使用无孔波纹吸热板的太阳能空气集热器.该集热器可增加对太阳辐射热能的吸收,加强吸热体和空气的对流换热.  相似文献   

7.
设计了一种太阳能空气集热器,对其热性能进行了实验研究。通过实验,分析了冬季3个典型日的集热效率和空气流量、进出口温度、太阳辐射强度间的关系。结果表明,出口温度随太阳辐射强度的增加而增加,集热效率随着空气流量的增大而增大。同时给出了太阳能空气集热器的效率方程。  相似文献   

8.
槽式太阳能集热器一维和二维传热数学模型是一组非线性代数方程,为改进求解的稳定性和计算精度,将槽式太阳能集热器一维和二维传热模型的求解看作有约束优化问题,建立了集热器传热过程求解的有约束优化数学模型,应用MATLAB软件优化函数fmincon进行求解。分析了传热流体入口温度及太阳能辐射热流密度变化对集热器性能的影响。采用fmincon函数求解集热器传热过程,计算速度快,计算过程稳定。分析表明,传热流体温度变化对集热器效率的影响大于太阳能辐射热流密度对集热器效率的影响。  相似文献   

9.
基于空气集热器的太阳能热泵供热供冷装置分析   总被引:1,自引:0,他引:1  
针对传统供热供冷模式的不足,给出了一种基于空气集热器的太阳能热泵供热供冷装置,并对其结构、性能等进行了分析和研究.结果表明,该装置在夏季供冷季可比传统空调节电约20%,降低能源费用约50%;在冬季供热季其耗能量约为常规燃煤集中供热的23%,费用约为常规燃煤集中供热的67%.  相似文献   

10.
从双流体概念出发,结合气—液两相流的特点,建立了描述两相湍流流动两方程模型,两方程为液相湍动能(k)方程和湍动能耗散率(ε)方程.通过对各时均运动方程和两方程中三阶以下湍流相关项作模型化处理,完成了两相流基本方程组的封闭,并将模型用于均匀环境中圆形气泡羽流的数值计算,初步证实了其正确有效性.  相似文献   

11.
气泡羽流的双流体两方程湍流模型   总被引:2,自引:2,他引:2  
从双流体概念出发,结合气-液两相流的特点,建立了描述两相湍流流动两方程模型,两方程为液相湍动能方程和湍动能耗散率方程,通过对各时均运动方程和两方向中三阶以下湍流相关项作模型化处理,完成了上流基本方程组的封闭,并将模型用于均匀环境中菜气泡羽流的数值计算,初步证辽产其正确有效性。  相似文献   

12.
常规的、不可变径的钻柱稳定器现在依然是井斜控制井底钻具组合中不可缺少的组件.但是,国内的相关资料贫乏,结构过于单一.通过对国外资料的综合分析,介绍了稳定器材料性能及尺寸参数,并着重介绍了稳定器所用的非磁性钢.同时,列出了三种套装式稳定器(即二件式、三件式、卡箍固定式)的结构和相关的尺寸参数,以及稳定器螺纹接头特点.这些内容有助于对国外稳定器有一个较全面的了解,也可作为稳定器设计、制造和使用的参考.  相似文献   

13.
为了研究流道尺寸对质子交换膜燃料电池性能的影响,通过多物理场直接耦合分析软件COMSOL,建立了质子交换膜燃料电池三维模型。分析了流道宽度不变,流道宽度与脊宽度之比分别为1:1、1:2、1:3时对电池性能的影响,验证了建立模型的有效性与可靠性;进一步研究当脊宽度不变,流道宽度与脊宽度之比分别为1:1、2:1、3:1,综合考虑了电流密度、阳极氢气浓度及阴极氧气浓度等因素的影响分析。研究发现:流道宽度和脊宽度之比为1:1是燃料电池较理想的尺寸比,并且脊宽度变化比流道宽度变化对电池性能的影响大。  相似文献   

14.
平板型太阳能集热器空气夹层最佳间距的确定   总被引:1,自引:0,他引:1  
本文对平板型太阳能集热器中的自然对流现象进行了理论分析,提出了水平、倾斜及垂直三种放置方式的太阳能集热器空气夹层最佳间距的确定问题。特别是对目前很少涉及的垂直放置平板型太阳能集热器的最佳空气层间距进行了深入探讨。同时本文对空气夹层中的自然对流热损失、空气夹层间距及放置倾角三者的相互关系和变化趋势进行了分析计算,提出了在0_o≤φ≤90°,10~2相似文献   

15.
太阳能平板空气集热器的长宽比是影响集热效率的重要因素,研究集热器的长宽比可减少集热器的能源浪费,为提高集热器的集热效率提供理论依据。文章围绕太阳能的热利用以及太阳能平板式空气集热器的集热效率问题,基于长宽比不同的平板空气集热器,建立数学传热模型,并且采用Fluent软件分别对其出口温度以及集热效率进行模拟计算,对不同长宽比集热效率进行研究。结果表明:当流道截面风速恒定为0.24 m/s,集热器出口温度随着长宽比增加而上升,最高、最低温度分别为316.36、282.07 K;截面风速恒定时,集热效率随着长宽比增加而下降,最高、最低效率分别为47.65%、31.98%;集热器的得热量差随着集热器长宽比的增加呈现先上升后下降的趋势,最大、最小得热量差分别为47.9、28.24 W;太阳能平板空气集热器的最佳长宽比为3。  相似文献   

16.
17.
太阳能空气集热器的集热效率偏低会导致出口温度的不均匀以及能源浪费,优化空气集热器可以有效地提高集热器的集热效率,降低能耗。文章通过建立新型集热器的数学模型,采用Fluent软件对其进行模拟计算,分析了空气流速以及空气进口温度的不同对于集热器出风温度以及集热效率的影响,比较了上、下风道速率不同时的集热器效率。结果表明:当保证上、下层风道风速相同时,出风温度随着进口风速的增大而减小,双风道集热器的瞬时集热效率随着上层风速增大而增大,而随着下层风速增大而减小;双风道集热器的出口温度随着进口温度的升高而上升,集热效率随之下降。  相似文献   

18.
19.
在能源紧缺的今天,太阳能作为一种新型环保能源,被越来越多的应用到我们的日常生产和生活中.作为以太阳能集热器为原理的太阳能热水器,也越来越多的被安装使用.然而由于各种原因,目前太阳能热水器在安装使用过程中,仍然存在很多问题,为此,太阳能热水器与建筑一体化的设计安装逐渐成为研究的热点.  相似文献   

20.
系统采用太阳能集热器与大水箱温差循环的方法进行热量交换,利用空气能热泵作为辅助能源,以石蜡作为相变蓄能材料储藏热量。系统的控制部分采用超低温保护和系统排空双保险的方法,确保在寒冷北方地区使用;太阳能集热器采用串联360。万能角度强制循环系统,连接循环管道少、热损小、系统热效率高,安装场地适应性强,运营成本低。通过运行验证,系统达到了热交换充分、节能高效、能源互补及时到位、适用地区广泛的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号