首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incremental sheet forming process has been proved to be quiet suitable and economical for job and batch type production, which exempts expensive and complex tooling for sheet forming. Investigation of forming forces becomes important for selecting the appropriate hardware and optimal process parameters in order to assure perfection and precision of process. Moreover, lack of available knowledge regarding the process parameters makes the process limited for industrial applications. This research paper aims at finding out effects of different input factors on forming forces in single-point incremental forming (SPIF) process. For operation sustainability and hardware safety, it becomes critical to optimize forming forces for a given set of factors to form a particular shape. In this study, optimization of input factors has been performed to produce conical frustums with helical tool path using Taguchi analysis as design of experiment (DOE) and analysis of variance (ANOVA). The optimal experimental conditions for forming forces have been calculated as sheet thickness (0.8 mm), step size (0.2 mm), tool diameter (7.52 mm), tool shape (hemispherical), spindle speed (1000 rpm), feed rate (1000 mm/min) and wall angle (50o). Effects of tool shape and viscosity of lubricants have also been investigated. An intensive understanding of the mechanism of forming forces has been presented, which shows that force trend after peak values depends upon instant input factors that can be categorized as a safe, severe and crucial set of parameters.  相似文献   

2.
客货共线无砟轨道,相较于客运专线,货车轴重的增加势必造成列车荷载的增大,而轨道结构直接承受列车荷载的作用,因而有必要对客货共线无砟轨道轮轨力荷载的统计特征做进一步研究。该文以客货共线CRTS I型板式无砟轨道为研究对象,选取遂渝线蔡家车站和渝怀线鱼嘴2号隧道两个测点,应用IMC动态数据采集系统测取过往客、货车垂向轮轨力。运用轮轨系统耦合动力学理论建立车辆-轨道垂向耦合动力学模型,计算不同车速和不同轨道不平顺激励下客、货车轮轨力,结合实测数据,分析客货共线无砟轨道轮轨力的统计特征,得出以下结论:客货共线无砟轨道轮轨力呈近似正态分布,95%以上客车轮轨力分布于45 kN~90 kN,95%以上货车轮轨力分布于100 kN~150 kN,与实测所得数据基本吻合;客货车轮轨力概率密度曲线随车速和不平顺幅值的增大而逐渐变得“矮胖”,轮轨力分布范围随车速增大和线路状况劣化而逐渐增大,且线路状况对轮轨力分布的影响远大于车速;以1.5倍静轮重和轮轨力最大峰值为控制指标,建议客货共线无砟轨道客车车速控制在180 km/h以下,货车车速控制在100 km/h以下。  相似文献   

3.
The effect of Al (0.4 and 1 wt%) addition on the hot deformation behavior of the Mg–3Sn–2Ca (TX32) alloy has been studied with the help of processing maps generated in the temperature and strain rate ranges of 300–500 °C and 0.0003–10 s?1. The deformed specimens have been examined as regards changes in texture and microstructure using electron back scatter diffraction and transmission electron microscopy, respectively. The map for the TX32 base alloy exhibited two dynamic recrystallization (DRX) domains in the temperature and strain rate ranges: (1) 300–350 °C and 0.0003–0.001 s?1, and (2) 390–500 °C and 0.005–0.6 s?1. While 0.4 wt% Al addition to TX32 did not result in any significant change in the processing map, the map for the alloy with 1 wt% Al (TX32-1Al) exhibited four domains in the ranges: (1) 300–325 °C and 0.0003–0.001 s?1, (2) 325–430 °C and 0.001–0.04 s?1, (3) 430–500 °C and 0.01–0.5 s?1, and (4) 430–500 °C and 0.0003–0.002 s?1. In the first three domains, DRX has occurred, whereas in the fourth domain, grain boundary sliding takes place causing intercrystalline cracking in tension. In Domain 1 for all the alloys, DRX has occurred predominantly by basal slip and recovery by climb as confirmed by the resulting basal texture and tilt type sub-boundary structure. In Domain 2 of the base alloy and Domain 3 of the alloy with 1 wt% Al, second-order pyramidal slip dominates associated with cross-slip which randomizes the texture, and forms tangled dislocations and twist type sub-boundaries in the microstructure. The addition of 1 wt% Al causes solid solution strengthening and results in Domain 2 of the map of TX32-1Al alloy and in this domain basal+prismatic slip dominate.  相似文献   

4.
Microstructure and texture evolution in Mg–1 %Mn–Sr alloys during extrusion has been investigated. At 350 °C, the extrusion of Mg–1 %Mn (M1) alloy exhibits the progressive formation of basal texture from the undeformed zone to the die opening. The extruded microstructure of M1 consists of recrystallized grains nucleated by grain boundary bulging and elongated parent grains along with extensive twinning. At 350 °C, the extrusion of M1–1.6Sr alloy results in progressive elongation of Mg–Sr precipitates in the form of stringers from the undeformed zone to the die opening. The final extruded microstructure of this alloy shows extensive recrystallization occurring at the intermetallic stringers by particle-stimulated nucleation (PSN). M1–(0.3–1.6)%Sr alloys display weaker textures due to PSN which creates new grains with random orientations. At 250 °C, the extrusion of M1 creates necklace of small recrystallized grains around large elongated parent grains. M1–1.6Sr alloy extruded at 250 °C exhibits continuous dynamic recrystallization (CDRX) in the Mg matrix and PSN at Mg–Sr precipitates. PSN is less extensive at lower temperature. Both CDRX and PSN grains have random orientations, and therefore, alloy develops random texture.  相似文献   

5.
Superficial nanostructuration by friction stir processing (FSP) experiments has been carried out on samples of AISI 45 steel. Sixteen tests were carried out, with a traverse speed in the range of 10–70 mm/min and 900–1800 N for the normal force at a constant rotational speed of 2000 rpm, in order to determine the optimal conditions for the process applied to this material and to test its feasibility. The results obtained have shown that FSP in this range of parameters leads to the formation of a stirred layer of small grains (30 times smaller than the initial grains) with high hardness (approximately doubled). When the load is higher than 1500 N and the traverse speed is superior to 50 mm/min, a white layer (WL) with very high hardness can be produced. It has also been determined that the increase of the stirred layers’ thickness is almost linked to the increase of the normal force.  相似文献   

6.
Hot deformation behavior of as-cast TX32 (Mg–3Sn–2Ca) alloy has been studied in uniaxial compression in the temperature and strain rate ranges of 300–500 °C and 0.0003–10 s?1 with a view to characterize the evolution of microstructure and texture. On the basis of the temperature and strain rate dependence of flow stress, a processing map has been developed and the crystallographic orientation information on the deformed specimens has been obtained from electron back scatter diffraction micro-texture analysis. The processing map revealed two domains of dynamic recrystallization in the temperature and strain rate ranges of (1) 300–350 °C and 0.0003–0.001 s?1 and (2) 390–500 °C and 0.005–0.6 s?1. Specimens deformed at peak in Domain 1 exhibited maximum intensity of basal poles located at about 35–45° to the compression axis while those deformed at peak in Domain 2 showed near-random texture. Schmid factor analysis of different slip systems operating in the two domains suggests that basal + prismatic slip causes the basal texture in Domain 1 while second-order pyramidal slip randomizes the texture in Domain 2.  相似文献   

7.
A novel low-alloy high-strength steel [Fe–0.20C–1.65Mn–1.40Si–1.50Al–1.30Cu–1.05Ni–1.07Co (wt%)] has been thermo-mechanically processed with a finish rolling temperature of 850 °C, followed by air cooling and water quenching in order to obtain a good combination of strength and ductility. Phase transformations of the above steel at different cooling rates have been studied and continuous cooling transformation (CCT) diagram has been constructed using data, obtained from dilatometric study. The phase field of CCT diagram indicates microstructure changes from a mixture of ferrite and bainite to fully martensite accompanied with the enhancement of hardness with increasing cooling rate. The microstructural investigation at lower cooling rate (≤5 °C/s) suggests the possibility of achieving pearlite-free microstructure by direct air cooling from the austenite region. Directly air-cooled steel has demonstrated primarily ferrite–bainite microstructure, which shows attractive tensile strength (>1050 MPa) and ductility (>15 %). On the other hand, directly water-quenched steels reveal predominantly lath martensitic microstructure with high dislocation density which exhibits higher tensile strength (>1600 MPa) and lower ductility (~12 %). The multiple stages of strain hardening behaviour of the investigated steel under different cooling conditions have been examined with respect to microstructural evolution.  相似文献   

8.
A prototype instrument has been developed to measure the forces generated on the starting blocks and the speed of a sprinter at the start of a sprint event. The starting block forces can be resolved into horizontal and vertical components for each foot, or the various combinations of these four forces can be calculated and displayed along with the resultant angle. The speed of the sprinter is measured by means of a Doppler microwave technique (radar gun). Both static and dynamic tests have been used to calibrate the force transducers and to verify their functional bandwidth. The speed measurement technique has been validated by four independent procedures: measurement of a constant velocity object; measurement of an object undergoing constant acceleration; determination of distance travelled by an athlete; and comparison with high-speed cinematography. Both the force and speed profiles can be displayed immediately on the screen of a microcomputer for feedback to the coach and athlete during training sessions  相似文献   

9.
Transient liquid phase (TLP) bonding enables joining at lower temperatures than traditional bonding techniques and preserves the potential for high-temperature applications, making it particularly attractive for joining ultra-high-temperature ceramics (UHTCs) such as carbides and borides. The feasibility of a TLP joint between “pure” carbides has been recently demonstrated. The present study examines the interactions that occur between undoped HfC or MoSi2-doped HfC and a Ni/Nb/Ni multilayer interlayer during TLP bonding. Bonding is performed at 1400 °C for 30 min in a high-vacuum furnace. SEM–EDS characterization shows that the reaction layer formed at the interlayer/ceramic interface contains mixed carbides and depending upon the ceramic, Ni–Nb–Hf, or Ni–Nb–Hf–Si, or Ni–Nb–Si alloys. Nanoindentation tests traversing the reaction layer between the bulk ceramic and Nb foil midplane also show a clear transition zone across which the indentation modulus and hardness vary. Crack-free joints have been obtained with undoped HfC. The addition of 5 vol% MoSi2 introduces small (<5 μm long) isolated cracks within the reaction layer, whereas with 15 vol% MoSi2 added, cracking was pervasive within the reaction layer. When the reaction layer exceeds a critical thickness, as in the case of the bond obtained with HfC doped with 15 vol% MoSi2, residual stresses become sufficiently large to cause extensive cracking and bond failure. The results suggest a need to characterize and balance the positive role of additives on sintering with the potentially deleterious role they may have on joining.  相似文献   

10.
The co-precipitation method is used for the preparation of Sn0.94Zn0.04O2 nanoparticles. The formation of typical rutile-type was confirmed by X-ray diffraction studies, and it was found to be a tetragonal phase at room temperature. In addition, the complex measurement has been investigated in the temperature range 473–713 K and in the frequency range 200 Hz–5 MHz. The results have been analyzed in the complex plane formalism and suitable equivalent circuits have been proposed in different regions. The direct current conductivity shows typical Arrhenuis behavior, when observed as a function of temperature. The modulus plots can be characterized by the empirical Kohlrausch–Williams–Watts function: Φ(t) = exp [(?t/τ)β]. The near value of activation energies obtained from the analyses of modulus and conductivity data confirms that the transport is through ion hopping mechanism in the investigated materials.  相似文献   

11.
Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance analyses. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR study confirms the complex formation between the polymer and salt. The shifts in T g values of 70 PVA–30 PVP blend and 70 PVA–30 PVP with different Mwt% of LiNO3 electrolytes shown by DSC thermograms indicate an interaction between the polymer and the salt. The dependence of T g and conductivity upon salt concentration has been discussed. The ion conductivity of the prepared polymer electrolyte has been found by a.c. impedance spectroscopic analysis. The PVA–PVP blend system with a composition of 70 wt% PVA: 30 wt% PVP exhibits the highest conductivity of 1·58 × 10???6 Scm???1 at room temperature. Polymer samples of 70 wt% PVA–30 wt% PVP blend with different molecular weight percentage of lithium nitrate with DMSO as solvent have been prepared and studied. High conductivity of 6·828 × 10???4 Scm???1 has been observed for the composition of 70 PVA:30 PVP:25 Mwt% of LiNO3 with low activation energy 0·2673 eV. The conductivity is found to increase with increase in temperature. The temperature dependent conductivity of the polymer electrolyte follows the Arrhenius relationship which shows hopping of ions in the polymer matrix. The relaxation parameters (ω) and (τ) of the complexes have been calculated by using loss tangent spectra. The mechanical properties of polymer blend electrolyte such as tensile strength, elongation and degree of swelling have been measured and the results are presented.  相似文献   

12.
A semi-doped polyaniline (PANI)–dodecylbenzenesulfonic acid (DBSA) complex is added with a suspension of multiwall carbon nanotubes (MWCNT)–divinylbenzene (DVB) to prepare PANI–MWCNT based thermosetting conductive resin system. Firstly, unreinforced nanocomposites with various loading of MWCNT are prepared. Continuous improvement in the electrical conductivity is observed with increasing MWCNT loading in the composite, while improvement in the mechanical properties is observed only up to 0.2 wt% MWCNT loading. On further MWCNT loading, the decrease in mechanical properties is observed. Flexural strength increased by 18% with 0.2 wt% of MWCNT in the unreinforced nanocomposite while electrical conductivity increased continuously to 0.68 S/cm (at 0.5 wt% of MWCNT loading) from 0.25 S/cm (neat sample). DSC and TGA analysis show that MWCNT effectively contributed to enhance the scavenging effect of PANI, affecting degree of DVB polymerization at higher loading of MWCNT. Samples were characterized by FTIR analysis. DMA analysis is also performed to understand the mechanical behavior of the cured unreinforced nanocomposite under dynamic loading. SEM observation has been employed to understand the dispersion behavior of MWCNT into the matrix. PANI-wrapping behavior on MWCNT is observed from the SEM images. Wrapping of PANI on MWCNT increased doping state and surface area of PANI which subsequently contribute to the increased scavenging behavior of PANI at higher MWCNT loading. A structural thermosetting nanocomposite with electrical conductivity of 0.68 S/cm, flexural modulus of 1.87 GPa and flexural strength up to 35 MPa is prepared. In addition, PANI–DBSA/DVB matrix with MWCNT is also used to impregnate carbon fabrics to prepare highly conductive CFRPs. A CFRP with 1.67 S/cm electrical conductivity in through-thickness direction and 328 MPa flexural strength is obtained with the addition of 0.2 wt% MWCNT into the resin system.  相似文献   

13.
Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1  ${\upmu} $ m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0·6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14· 4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10???7 mm 3 /N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.  相似文献   

14.
A series of strontium barium niobate-based borate system glass–ceramics with Gd2O3 addition have been prepared by controlled crystallization method. The effect of Gd2O3 addition on the microstructure, phase evolution and dielectric properties has been investigated. The results show that the addition of Gd2O3 to the glass–ceramics changes the dielectric property and energy-storage density. Typically, the glass–ceramics with 0.5 mol% Gd2O3 heat treated at 630 °C/2 h + 800 °C/3 h possesses a dielectric constant of 136, a breakdown strength of 1,075 kV/mm and energy-storage density of 6.94 J/cm3, which is suitable for the application in high energy-storage capacitors.  相似文献   

15.
This article presents the deposition and characterization of CdS and CdHgTe thin films for the fabrication of CdHgTe/CdS structure. The growth of CdS and CdHgTe thin films on FTO-coated conducting glass substrates have been performed by chemical bath deposition (CBD) and electrodeposition methods, respectively. The deposition conditions have been optimized for getting better quality layers of CdS and CdHgTe. The grown layers of both CdS and CdHgTe have been characterized by photoelectrochemical cell (PEC) measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–vis spectrophotometer. Annealing effect of the deposited films has also been investigated. Finally the fabrication of CdHgTe/CdS structure has been performed and investigated by I–V characteristics. PEC, XRD, SEM and UV–vis spectrophotometer studies reveal that chemically deposited CdS layers are n-type with band gap values vary from 2.29 to 2.41 eV and cubic with (111) preferential orientation, and have spherical grain distributed over the surface. However, electrodeposited CdHgTe layers are p-type with band gap values varying from 1.50 to 1.53 eV and cubic with highly oriented CdHgTe crystallites with the (111) planes parallel to the substrate, and have uniform distribution of granular grains over the surface. The fabricated CdHgTe/CdS structure gave an open-circuit photovoltage and a short-circuit photocurrent of 510 mV and 13 mA/cm2 respectively, under AM 1.5 illumination.  相似文献   

16.
Composites based on ethylene acrylic elastomer (AEM) filled with a special type of conductive carbon black (CCB) have been prepared by two-roll mixing mill. The compression-molded sheet of the prepared composites have been subjected to electron beam (EB) radiation dose up to 400 kGy to induce radiation crosslinked composites. The crosslinked density has been calculated according to Flory–Rehner equation and is found to increase with increasing EB dose and CCB loading. Chain scission-to-crosslink density has been calculated by Charlesby–Pinner equation, which shows decreasing trend with increasing radiation dose. The dielectric relaxation behaviors of different doses of EB-treated AEM/CCB composites have been extensively studied as a function of frequency of applied electric field (101–106 Hz), CCB loading [0–30 phr (parts per hundred)], temperature (25–120 °C), and EB dose (50–400 kGy). It is observed that the dielectric permittivity (ε′) increases with CCB loading and temperature, but decreases with increasing EB dose. This can be explained on the basis of interfacial polarization. Based on dielectric loss tangent (tan δ) values, it is observed that the dielectric relaxation time decreases with increases in the filler loading and temperature. However, it increases with increase in the radiation doses. Both the real and imaginary parts of the impedance (Z′ and Z″) have been found to decrease with increase in conductive filler loading. The AC conductivity (σac) increases with increase in the CCB concentration, test temperature, and radiation doses, which is attributed to the more pronounced hopping and tunneling mechanism. The percolation threshold (φcrit) occurred in the range of 16 phr CCB loading. The dispersions of CCB phase in AEM matrix below and above percolation have been captured by the transmission electron microscope photomicrographs.  相似文献   

17.
A nickel modified BiFeO3–BaTiO3 electronic system has been fabricated by using a high-temperature solid-state reaction process. Preliminary X-ray structural analysis has confirmed the formation of a single-phase material in the orthorhombic crystal system. The dielectric and impedance characteristics of the prepared material have been studied in a wide range of frequency (1 kHz-1 MHz) at different temperatures (25–500 °C) for the better understanding of the frequency-temperature dependence of its capacitive and resistive behavior respectively. A significant effect of grains and grain boundaries of the resistive characteristics of the material is observed at high temperatures. The electrical conductivity of the material increases with increase in frequency in the low-temperature region. Preliminary study of a small amount of Ni doping in the above binary system (i.e., BiFeO3–BaTiO3) has provided many interesting results which may be useful for the fabrication of an electronic device.  相似文献   

18.
In this study, the dynamic behaviour of ballasted track with and without tyre-derived aggregate (TDA) as subballast layer was assessed using impulse–response (IR) test. For this purpose, a prototype of a ballasted track was established and many IR tests were carried out. The obtained results were represented in three different kinds of velocity–time, velocity–distance and velocity–frequency curves. Processing of the obtained results revealed that TDA efficiency in terms of vibration reduction was in the range of 17–46 dB when the impact was applied to the ballast and it was in the ranges of 6–32 dB and 6–47 dB while impact locations were on the sleeper and rail, respectively. Overall, it was proven that TDA with the particle size of 5–50 mm and thickness of 200 mm reduced by 6–47 dB in vertical vibrations with the dominant frequency range of 32–63 Hz.  相似文献   

19.
An experimental study of flow boiling through diverging microchannel has been carried out in this work, with the aim of understanding boiling in non-uniform cross-section microchannel. Diverging microchannel of 4° of divergence angle and 146 μm hydraulic diameter (calculated at mid-length) has been employed for the present study with deionised water as working fluid. Effect of mass flux (118–1182 kg/m2-s) and heat flux (1.6–19.2 W/cm2) on single and two-phase pressure drop and average heat transfer coefficient has been studied. Concurrently, flow visualization is carried out to document the various flow regimes and to correlate the pressure drop and average heat transfer coefficient to the underlying flow regime. Four flow regimes have been identified from the measurements: bubbly, slug, slug–annular and periodic dry-out/ rewetting. Variation of pressure drop with heat flux shows one maxima which corresponds to transition from bubbly to slug flow. It is shown that significantly large heat transfer coefficient (up to 107 kW/m2-K) can be attained for such systems, for small pressure drop penalty and with good flow stability.  相似文献   

20.
Cubic boron nitride (cBN) has outstanding mechanical and thermal properties. The previous research focused on mechanical properties, to data, the thermal property of cBN has rarely been reported. In this work, a wide range of aluminum/cubic boron nitride (Al/cBN) composites were fabricated by pressure infiltration at 5.0 GPa and 960–1600 °C. The microstructure, phase composition, thermal conductivity and coefficient of thermal expansion of the Al/cBN composites were investigated. The results showed that a maximum thermal conductivity of 266 W/mK and the coefficient of thermal expansion of 4–6 × 10?6 K?1 which matches well to semiconductors, indicating that the Al/cBN composites are promised heat sink materials of high efficiency for the wide band gap semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号