首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Pt/WC/C catalyst is developed to increase the methanol electro-oxidation (MOR) and oxygen electro-reduction (ORR) activities of the Pt/C catalyst. Cyclic voltammetry and CO stripping results show that spill-over of H+ occurs in Pt/WC/C, and this is confirmed by comparing the desorption area values for H+ and CO. A significant reduction in the potential of the CO electro-oxidation peak from 0.81 V for Pt/C to 0.68 V for Pt/WC/C is observed in CO stripping test results. This indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support with WC. Preferential deposition of Pt on WC rather than on the carbon support is investigated by complementary analysis of CO stripping, transmission electron microscopy and concentration mapping by energy dispersive spectroscopy. The Pt/WC/C catalyst exhibits a specific activity of 170 mA m−2 for MOR. This is 42% higher than that for the Pt/C catalyst, viz., 120 mA m−2. The Pt/WC/C catalyst also exhibits a much higher current density for ORR, i.e., 0.87 mA cm−2 compared with 0.36 mA cm−2 for Pt/C at 0.7 V. In the presence of methanol, the Pt/WC/C catalyst still maintains a higher current density than the Pt/C catalyst.  相似文献   

2.
A high active Pt/C(b) catalyst was prepared by chemical reduction. The experimental results showed that the Pt/C(b) catalyst formed by reduction of hexachloroplatinic acid with formic acid has excellent catalytic properties for methanol and adsorbed CO(COad) electro-oxidation. The electrocatalytic activity of the catalyst was characterized as having a specific surface activity of 33.38 mA cm−2 at 0.6 V (versus Ag-AgCl). The Pt in the catalyst was well dispersed on carbon with an electrochemically-active specific surface area (ESA) of 84.16 m2 g−1 and a BET specific surface area of 192.34 m2 g−1 and an average particle size of about 2.6 nm. The catalyst showed a very good stability for 12 h.  相似文献   

3.
The Pt nanoparticles have been well dispersed on electrospinning-derived carbon fibrous mats (CFMs) by using formaldehyde vapor as reducer to react with H2PtCl6·6H2O adsorbed on the CFMs at 160 °C. The prepared electrodes of Pt-CFMs have been characterized by using scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectroscopy, and the performance of the electrodes for methanol oxidation has been investigated by using cyclic voltammetry, chronoamperometry, quasi-steady state polarization and electrochemical impedance spectroscopy techniques. The results demonstrate that Pt-CFMs electrodes exhibit peak current density of 445 mA mg−1 Pt, exchange current of 235.7 μA cm−2, charge transfer resistance of 16.1 Ω cm2 and better stability during the process of methanol oxidation, which are superior to the peak current density of 194 mA mg−1 Pt, exchange current of 174.7 μA cm−2 and charge transfer resistance of 39.4 Ω cm2 obtained for commercial Pt/C supported on CFMs. It indicates that the novel process in which formaldehyde vapor is used as reducer to prepare Pt catalyst with high performance can be developed.  相似文献   

4.
A direct alkaline fuel cell with a liquid potassium hydroxide solution as an electrolyte is developed for the direct use of methanol, ethanol or sodium borohydride as fuel. Three different catalysts, e.g., Pt-black or Pt/Ru (40 wt.%:20 wt.%)/C or Pt/C (40 wt.%), with varying loads at the anode against a MnO2 cathode are studied. The electrodes are prepared by spreading the catalyst slurry on a carbon paper substrate. Nickel mesh is used as a current-collector. The Pt–Ru/C produces the best cell performance for methanol, ethanol and sodium borohydride fuels. The performance improves with increase in anode catalyst loading, but beyond 1 mg cm−2 does not change appreciably except in case of ethanol for which there is a slight improvement when using Pt–Ru/C at 1.5 mA cm−2. The power density achieved with the Pt–Ru catalyst at 1 mg cm−2 is 15.8 mW cm−2 at 26.5 mA cm−2 for methanol and 16 mW cm−2 at 26 mA cm−2 for ethanol. The power density achieved for NaBH4 is 20 mW cm−2 at 30 mA cm−2 using Pt-black.  相似文献   

5.
Carbon supported Pt-Cu bimetallic nanoparticles are prepared by a modified NaBH4 reduction method in aqueous solution and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and fuel cell test. The results show that the carbon supported Pt-Cu bimetallic catalysts have much higher catalytic activity for the direct oxidation of BH4 than the carbon supported pure nanosized Pt catalyst, especially the Pt50Cu50/C catalyst presents the highest catalytic activity among all as-prepared catalysts, and the DBHFC using Pt50Cu50/C as anode electrocatalyst and Pt/C as cathode electrocatalyst shows as high as 71.6 mW cm−2 power density at a discharge current density of 54.7 mA cm−2 at 25 °C.  相似文献   

6.
The nanostructured Corich core-Ptrich shell/C electrocatalysts were prepared by combining the thermal decomposition and the chemical reduction methods. The particle size of homemade Corich core-Ptrich shell/C analyzed by TEM was significantly greater than that of Pt grain size calculated from the XRD data due to the existence of Co in core. The mass activity and specific activity of oxygen reduction reaction (ORR) at the overpotential (η) of 0.1 V were 6.69 A g−1 and 1.51 × 10−5 A cm−2 for Pt/C, and 10.22 A g−1 and 2.73 × 10−5 A cm−2 for Corich core-Ptrich shell/C in 0.5 M HClO4 aqueous solution at 25 °C. The Tafel slopes of ORR on Pt/C and Corich core-Ptrich shell/C electrocatalysts were obtained as 64 and 67 mV dec−1 at a lower η (50–100 mV), and 116 and 110 mV dec−1 at a higher η (120–200 mV). The exchange current densities of ORR on Pt/C and Corich core-Ptrich shell/C evaluated based on the higher Tafel slope regions were 6.76 × 10−5 and 9.21 × 10−5 A cm−2, respectively. The experimental results indicated that the ORR on Corich core-Ptrich shell/C electrocatalyst in 0.5 M HClO4 aqueous solution was a four electron transfer mechanism and first order with respect to the dissolved oxygen.  相似文献   

7.
Multi-walled carbon nanotubes (MWCNTs) were used as catalyst support for depositing platinum nanoparticles by a wet chemistry route. MWCNTs were initially surface modified by citric acid to introduce functional groups which act as anchors for metallic clusters. A two-phase (water-toluene) method was used to transfer PtCl62− from aqueous to organic phase and the subsequent sodium formate solution reduction step yielded Pt nanoparticles on MWCNTs. High-resolution TEM images showed that the platinum particles in the size range of 1-3 nm are homogeneously distributed on the surface of MWCNTs. The Pt/MWCNTs nanocatalyst was evaluated in the proton exchange membrane (PEM) single cell using H2/O2 at 80 °C with Nafion-212 electrolyte. The single PEM fuel cell exhibited a peak power density of about 1100 mW cm−2 with a total catalyst loading of 0.6 mg Pt cm−2 (anode: 0.2 mg Pt cm−2 and cathode: 0.4 mg Pt cm−2). The durability of Pt/MWCNTs nanocatalyst was evaluated for 100 h at 80 °C at ambient pressure and the performance (current density at 0.4 V) remained stable throughout. The electrochemically active surface area (64 m2 g−1) as estimated by cyclic voltammetry (CV) was also similar before and after the durability test.  相似文献   

8.
A fuel cell made with silicon is operated with hydrogen supplied by a reformer and a preferential oxidation (PrOx) reactor those are also made with silicon. The performance and durability of the fuel cell is analyzed and tested, then compared with the results obtained with pure hydrogen. Three components of the system are made using silicon technologies and micro electro-mechanical system (MEMS) technology. The commercial Cu-ZnO-Al2O3 catalyst for the reformer and the Pt-Al2O3 catalyst for the PrOx reactor are coated by means of a fill-and-dry method. A conventional membrane electrode assembly composed of a 0.375 mg cm−2 PtRu/C catalyst for the anode, a 0.4 mg cm−2 Pt/C catalyst for the cathode, and a Nafion™ 112 membrane is introduced to the fuel cell. The reformer gives a 27 cm3 min−1 gas production rate with 3177 ppm CO concentration at a 1 cm3 h−1 methanol feed rate and the PrOx reactor shows almost 100% CO conversion under the experimental conditions. Fuel cells operated with this fuel-processing system produce 230 mW cm−2 at 0.6 V, which is similar to that obtained with pure hydrogen.  相似文献   

9.
We reported on the synthesis, characterization, and photovoltaic/electrochemical properties of Pt/acetylene-black (AB) cathode as well as their application in dye-sensitized solar cells (DSCs). The Pt/AB electrode was prepared through a thermal decomposition of H2PtCl6 on the AB substrate. SEM and TEM observations showed that the Pt nanoparticles were homogeneously dispersed on the AB surface. The Pt-loading content in the Pt/AB electrode was only about 2.0 μg cm−2, which was much lower than 5–10 μg cm−2 generally used for the Pt electrode in DSCs. Electrochemical measurements displayed a low charge-transfer resistance of 1.48 Ω cm2 for the Pt/AB electrode. Furthermore, when this low-Pt-loading electrode was used as the cathode of DSCs, an overall light-to-electricity energy conversion efficiency of 8.6% was achieved, showing commercially realistic energy conversion efficiency in the application of DSCs.  相似文献   

10.
A novel electrocatalyst, nanoporous palladium (npPd) rods can be facilely fabricated by dealloying a binary Al80Pd20 alloy in a 5 wt.% HCl aqueous solution under free corrosion conditions. The microstructure of these nanoporous palladium rods has been characterized using scanning electron microscopy and transmission electron microscopy. The results show that each Pd rod is several microns in length and several hundred nanometers in diameter. Moreover, all the rods exhibit a typical three-dimensional bicontinuous interpenetrating ligament-channel structure with length scale of 15-20 nm. The electrochemical experiments demonstrate that these peculiar nanoporous palladium rods (mixed with Vulcan XC-72 carbon powders to form a npPd/C catalyst) reveal a superior electrocatalytic performance toward methanol oxidation in the alkaline media. In addition, the electrocatalytic activity obviously depends on the metal loading on the electrode and will reach to the highest level (223.52 mA mg−1) when applying 0.4 mg cm−2 metal loading on the electrode. Moreover, a competing adsorption mechanism should exist when performing methanol oxidation on the surface of npPd rods, and the electro-oxidation reaction is a diffusion-controlled electrochemical process. Due to the advantages of simplicity and high efficiency in the mass production, the npPd rods can act as a promising candidate for the anode catalyst for direct methanol fuel cells (DMFCs).  相似文献   

11.
Pt/TiO2/C catalysts are employed as the cathode catalysts for proton exchange membrane fuel cell (PEMFC). The comparative studies on the Pt/C and Pt/TiO2/C catalysts are conducted with the physical and electrochemical techniques.After the accelerating aging test (AAT), the remaining electrochemical active surface area (EAS) of the Pt/TiO2/C catalysts is 75.6%, which is larger than that of the Pt/C catalysts (42.6%). The apparent exchange current density () of the oxygen reduction reaction (ORR) at the Pt/C catalysts decreases from 3.02 × 10−9 to 1.32 × 10−11 A cm−2 after the AAT. And the value of of the ORR at the Pt/TiO2/C catalysts is 2.88 × 10−9 A cm−2 before the AAT and 2.51 × 10−9 A cm−2 after the AAT. Furthermore, the output performance degradation of the PEMFC using the Pt/TiO2/C cathode catalysts is also less than that using the Pt/C catalysts. The particle size of the Pt/C catalysts increases significantly from 5.3 to 26.5 nm after the AAT. The mean particle size of the Pt/TiO2/C catalysts is 7.3 nm before the AAT and 9.2 nm after the AAT. It can be concluded that the long-term durability of the Pt/TiO2/C catalysts in a PEMFC is much better than that of the Pt/C catalysts.  相似文献   

12.
In this study, a series of Ni–Pt/C and Ni/C catalysts, which were employed as anode catalysts for a direct borohydride fuel cell (DBFC), were prepared and investigated by XRD, TEM, cyclic voltammetry, chronopotentiometry and fuel cell test. The particle size of Ni37–Pt3/C (mass ratio, Ni:Pt = 37:3) catalyst was sharply reduced by the addition of ultra low amount of Pt. And the electrochemical measurements showed that the electro-catalytic activity and stability of the Ni37–Pt3/C catalysts were improved compared with Ni/C catalyst. The DBFC employing Ni37–Pt3/C catalyst on the anode (metal loading, 1 mg cm−2) showed a maximum power density of 221.0 mW cm−2 at 60 °C, while under identical condition the maximum power density was 150.6 mW cm−2 for Ni/C. Furthermore, the polarization curves and hydrogen evolution behaviors on all the catalysts were investigated on the working conditions of the DBFC.  相似文献   

13.
A passive, air-breathing polymethyl methacrylate (PMMA) based single-cell and a multi-cell stack micro-direct methanol fuel cell (DMFC) with 1.0 cm2 active area with a novel cathode plate structure and assembly layer are designed, fabricated and tested. The fuel cell is completely passive with no auxiliary device such as pump or fan. Oxygen is taken from the surrounding air, and the methanol solution is stored in a built-in reservoir. The performance of the single cell is tested with different methanol concentrations ranging from 1.0 M to 5.0 M, and the optimum performance is achieved by using methanol at a concentration of 4.0 M. A stack with 6 cells is fabricated and tested with the optimum methanol concentration of 4.0 M, and power levels produced by different catalyst loadings on the anode are compared. Besides, this study also considers the cost analysis of micro-DMFC. The combination of a catalyst loading of 3.0 mg cm−2 Pt/Ru on the anode and 2.0 mg cm−2 Pt on the cathode yield the highest power of 12.05 mW at 1.08 V and 11.2 mA. The total cost for the micro-DMFC in this study is only about USD 2 mW−1.  相似文献   

14.
A nanosized IrO2 anode electrocatalyst was prepared by a sulfite-complex route for application in a proton exchange membrane (PEM) water electrolyzer. The physico-chemical properties of the IrO2 catalyst were studied by termogravimetry–differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The electrochemical activity of this catalyst for oxygen evolution was investigated in a single cell PEM electrolyzer consisting of a Pt/C cathode and a Nafion® membrane. A current density of 1.26 A cm−2 was obtained at 1.8 V and a stable behavior during steady-state operation at 80 °C was recorded. The Tafel plots for the overall electrochemical process indicated a slope of about 80 mV dec−1 in a temperature range from 25 °C to 80 °C. The kinetic and ohmic activation energies for the electrochemical process were 70.46 kJ mol−1 and 13.45 kJ mol−1, respectively. A short stack (3 cells of 100 cm2 geometrical area) PEM electrolyzer was investigated by linear voltammetry, impedance spectroscopy and chrono-amperometric measurements. The amount of H2 produced was 80 l h−1 at 60 A under 330 W of applied electrical power. The stack electrical efficiency at 60 A and 75 °C was 70% and 81% with respect to the low and high heating value of hydrogen, respectively.  相似文献   

15.
Design of novel nano-scale catalysts with high activity and low cost for methanol oxidation reaction is crucial for the development of direct methanol fuel cell. In this study, MnOx, Pt and Pb were forced to precipitate successively on the surface of carbon nanotubes for fabricating a PtPb/MnOx-CNTs catalyst. Physical characterizations indicated that there existed a mass of Mn (IV, Ⅴ), Pb (Ⅱ) and Pt (0) species, and partial alloying between Pt and Pb in this catalyst. Methanol oxidation reaction with this novel composite exhibited over 3 times higher specific activity (140.9 mA cm−2) and somewhat lower onset potential (−0.1 V vs. Hg/Hg2SO4) than the values on Pt/CNTs (44.2 mA cm−2 and 0 V, respectively). Fundamental understanding in reaction mechanisms enabled us to reveal the distinguishing functions between Pb and MnOx in methanol oxidation processes. The addition of Pb resulted in the enhanced intrinsic activity towards electro-oxidation of residual intermediate species, while dehydrogenation in methanol oxidation processes was obviously improved by using MnOx-CNTs as a support.  相似文献   

16.
Pt electrode dissolution has been investigated using an electrochemical quartz crystal microbalance (EQCM) in H2O2-containing 0.5 mol dm−3 H2SO4. The Pt electrode weight-loss of ca. 0.4 μg cm−2 is observed during nine potential sweeps between 0.01 and 1.36 V vs. RHE. In contrast, the Pt electrode weight-loss is negligible without H2O2 (<0.05 μg cm−2). To support the EQCM results, the weight-decrease amounts of a Pt disk electrode and amounts of Pt dissolved in the solutions were measured after similar successive potential cycles. As a result, these results agreed well with the EQCM results. Furthermore, the H2O2 concentration dependence of the Pt weight-decrease rate was assessed by successive potential steps. These EQCM data indicated that the increase in H2O2 accelerates the Pt dissolution. Based on these results, H2O2 is known to be a major factor contributing to the Pt dissolution.  相似文献   

17.
Carbon supported Pt3Y (Pt3Y/C) and PtY (PtY/C) were investigated as oxygen reduction reaction (ORR) catalysts. After synthesis via reduction by NaBH4, the alloy catalysts exhibited 10-20% higher mass activity (mA mgPt−1) than comparably synthesized Pt/C catalyst. The specific activity (μA cmPt−2) was 23 and 65% higher for the Pt3Y/C and PtY/C catalysts, respectively, compared to Pt/C. After annealing at 900 °C under a reducing atmosphere, Pt3Y/C-900 and PtY/C-900 catalysts showed improved ORR activity; the Pt/C and Pt/C-900 (Pt/C catalyst annealed at 900 °C) catalysts exhibited specific activities of 334 and 393 μA cmPt−2, respectively, while those of the Pt3Y/C-900 and PtY/C-900 catalysts were 492 and 1050 μA cmPt−2, respectively. X-ray diffraction results revealed that both the Pt3Y/C and PtY/C catalysts have a fcc Pt structure with slight Y doping. After annealing, XRD showed that more Y was incorporated into the Pt structure in the Pt3Y/C-900 catalyst, while the PtY/C-900 catalyst remained unchanged. Although these results suggested that the high ORR activity of the PtY/C-900 catalyst did not originate from Pt-Y alloy formation, it is clear that the Pt-Y system is a promising ORR catalyst which merits further investigation.  相似文献   

18.
A designed asymmetric hybrid electrochemical capacitor was presented where NiO and Ru0.35V0.65O2 as the positive and negative electrode, respectively, both stored charge through reversible faradic pseudocapacitive reactions of the anions (OH) with electroactive materials. And the two electrodes had been individually tested in 1 M KOH aqueous electrolyte to define the adequate balance of the active materials in the hybrid system as well as the working voltage of the capacitor based on them. The electrochemical tests demonstrated that the maximum specific capacitance and energy density of the asymmetric hybrid electrochemical capacitor were 102.6 F g−1 and 41.2 Wh kg−1, respectively, delivered at a current density of 7.5 A cm−2. And the specific energy density decreased to 23.0 Wh kg−1 when the specific power density increased up to 1416.7 W kg−1. The hybrid electrochemical capacitor also exhibited a good electrochemical stability with 83.5% of the initial capacitance over consecutive 1500 cycle numbers.  相似文献   

19.
Ammonia-borane (NH3BH3), as a source of protide (H), is initially proposed to release its energy through a fuel cell (direct ammonia-borane fuel cell, DABFC). Cell performance has been elucidated in a 25 cm2 laboratory cell constructed with an oxygen cathode and an ammonia-borane solution fed anode, where the catalyst layers are made of Vulcan XC-72 with 30 wt.% Pt. The potential is 0.6 V at the current density of 24 mA cm−2, corresponding to power density >14 mW cm−2 at room temperature. The direct electron transfer from protide (H) in NH3BH3 to proton (H+) has been further proved by the open circuit potential and the cyclic voltammetry results, which show the possibility of improvement in the performance of DABFC by, for example, exploring new electrode materials.  相似文献   

20.
A new layered compound K2.33Sr0.67Nb5O14.335 was prepared and its full structure was characterized by single crystal diffraction of K2.33Sr0.67Nb5O14.335, which belongs to Tetragonal layered perovskite phase. The band structure of K2.33Sr0.67Nb5O14.335 was calculated by CASTEP code based on the density functional theory (DFT). H2.33Sr0.67Nb5O14.335 was prepared by a proton exchange of K2.33Sr0.67Nb5O14.335, and followed with successive reaction to obtain Pt incoporated sample. Using H2.33Sr0.67Nb5O14.335/Pt as catalyst, the photocatalytic H2 evolution rate reached 153.1 cm3 h−1 g−1 in 10 vol.% methanol aqueous solution under irradiation with wavelength more than 290 nm from a 100 W mercury lamp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号