首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A-site non-stoichiometric materials Sr1.5LaxMnO4 (x = 0.35, 0.40, 0.45) are prepared via solid state reaction. The structure of these materials is determined to be tetragonal. Both the lattice volume and the thermal expansion coefficient reduce with the decrease of lanthanum content. On the contrary, the conductivity increases and the maximum value of 13.9 S cm−1 is found for Sr1.5La0.35MnO4 at 750 °C in air. AC impedance spectroscopy and DC polarization measurements are used to study the electrode performance. The optimum composition of Sr1.5La0.35MnO4 results in 0.25 Ω cm2 area specific resistance (ASR) at 750 °C in air. The oxygen partial pressure measurement indicates that the charge transfer process is the rate-limiting step of the electrode reactions.  相似文献   

2.
Nd1.93Sr0.07CuO4 nanofibers are prepared by electrospinning technique followed by a simple thermal treatment. The morphology and phase evolution of as-obtained fibers are characterized by TG-DTA, XRD, FT-IR and SEM, respectively. Typical ceramic fiber diameter is 100–200 nm, with length exceeding tens of microns. Rapid heating the nanofiber cathode at 1000 °C for 15 min results in homogeneous porous microstructure and good contact with the CGO electrolyte. EIS analysis of the nanofiber electrode gives a polarization resistance of 0.26 Ω cm2 at 700 °C in air, two times smaller than that from the powder cathode with the same composition. The excellent electrochemical performance can be attributed to the well constructed microstructure of the fiber cathode, which can promote surface oxygen diffusion or adsorption processes on the cathode.  相似文献   

3.
Sr2Fe1−xCoxNbO6 (0.1 ≤ x ≤ 0.9) (SFCN) oxides with perovskite structure have been developed as the cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). These materials are synthesized via solid-state reaction and characterized by XRD, SEM, electrical conductivity, AC impedance spectroscopy and DC polarization measurements. The reactivity tests show that the Sr2Fe1−xCoxNbO6 electrodes are chemically compatible with the Zr0.85Y0.15O1.925 (YSZ) and Ce1.9Gd0.1O1.95 (CGO) electrolytes at 1200 °C, and the electrode forms a good contact with the electrolyte after sintering at 1200 °C for 12 h. The total electrical conductivity that has a considerable effect on the electrode properties is determined in a temperature range from 200 °C to 800 °C. The highest conductivity of 5.7 S cm−1 is found for Sr2Fe0.1Co0.9NbO6 at 800 °C in air. The electrochemical performances of these cathode materials are studied using impedance spectroscopy at various temperatures and oxygen partial pressures. Two different kinds of reaction rate-limiting steps exist on the Sr2Fe0.1Co0.9NbO6 electrode, depending on the temperature. The Sr2Fe0.1Co0.9NbO6 electrode on CGO electrolyte exhibits a polarization resistance of 0.74 Ω cm2 at 750 °C in air, which indicates that the Sr2Fe0.1Co0.9NbO6 electrode is a promising cathode material for IT-SOFCs.  相似文献   

4.
La1−xSrxMnO3 (LSM) has been widely developed as the cathode material for high-temperature solid oxide fuel cells (SOFCs) due to its chemical and mechanical compatibilities with the electrolyte materials. However, its application to low-temperature SOFCs is limited since its electrochemical activity decreases substantially when the temperature is reduced. In this work, low-temperature SOFCs based on LSM cathodes are developed by coating nanoscale samaria-doped ceria (SDC) onto the porous electrodes to significantly increase the electrode activity of both cathodes and anodes. A peak power density of 0.46 W cm−2 and area specific interfacial polarization resistance of 0.36 Ω cm2 are achieved at 600 °C for single cells consisting of Ni-SDC anodes, LSM cathodes, and SDC electrolytes. The cell performances are comparable with those obtained with cobalt-based cathodes such as Sm0.5Sr0.5CoO3, and therefore encouraging in the development of low-temperature SOFCs with high reliability and durability.  相似文献   

5.
Pr2−xSrxNiO4 (PSNO, x = 0.3, 0.5 and 0.8) cathode materials for intermediate-temperature solid oxide fuel cell (IT-SOFC) were synthesized by a glycine-nitrate process using Pr6O11, Ni(NO3)2·6H2O and SrCO3 powders as raw materials. Phase structure of the synthesized powders was characterized by X-ray diffraction analysis (XRD). Microstructure of the sintered PSNO samples was observed and thermal expansion coefficient (TEC) and electrical conductivity were investigated. Electrochemical impedance spectroscopy (EIS) measurement of the PSNO materials on Sm0.2Ce0.8O1.9 (SCO) electrolyte was carried out, and single cells based on the PSNO cathodes were also assembled and their performances were tested. The results show that the synthesized PSNO powders have pure K2NiF4-type structure and the PSNO materials are chemically stable with Sm0.2Ce0.8O1.9 (SCO) electrolyte. The sintered PSNO samples have porous and fine microstructure with pore size smaller than 1 μm. Average thermal expansion coefficient of the PSNO materials is about 12–13 × 10−6 K−1 at 200–800 °C and the electrical conductivity is in the range of 70–120 Scm−1 at 800 °C. Area specific resistance (ASR) of the Pr2−xSrxNiO4 materials on SCO electrolyte is 0.407 Ωcm2, 0.126 Ωcm2 and 0.112 Ωcm2 for x = 0.3, 0.5 and 0.8 at 800 °C, respectively. Maximum open circuit voltage (OCV) and power density of the single NiO-SCO/SCO/PSNO cells are 0.75 V and 298 mWcm−2 at 700 °C, respectively, which indicates that Pr2−xSrxNiO4 may be a potential cathode material for IT-SOFC.  相似文献   

6.
K2NiF4-type structure oxides La2Cu1−xCoxO4 (x = 0.1, 0.2, 0.3) are synthesized and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). The materials are characterized by XRD, SEM and electrochemical impedance spectrum (EIS), respectively. The results show that no reaction occurs between La2Cu1−xCoxO4 electrode and Ce0.9Gd0.1O1.95 (CGO) electrolyte at 1000 °C. The electrode forms good contact with the electrolyte after sintering at 800 °C for 4 h in air. The electrode properties of La2Cu1−xCoxO4 are studied under various temperatures and oxygen partial pressures. The optimum composition of La2Cu0.8Co0.2O4 results in 0.51 Ω cm2 polarization resistance (Rp) at 700 °C in air. The rate limiting step for oxygen reduction reaction (ORR) is the charge transfer process. La2Cu0.8Co0.2O4 cathode exhibits the lowest overpotential of about 50 mV at a current density of 48 mA cm−2 at 700 °C in air.  相似文献   

7.
Two metallic alloys, namely, Crofer22 APU and equivalent ZMG23 were investigated as possible interconnect materials in SOFC fuel cells. A La0.67Sr0.33MnO3La0.67Sr0.33MnO3 (LSM) thin film is coated on these materials using pulsed DC magnetron sputtering. The as-deposited film is amorphous but is transformed into perovskite structure after annealing at different temperatures and times. The coating and uncoated structures and surface morphologies are analyzed using X-ray diffraction (XRD), electron Probe Micro Analyzer (EPMA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The result shows that the LSM thin film on Crofer22 APU is good for compaction and adhesion, but there are some stresses between the equivalent ZMG232 and the coating and then create some cracks on the coating. Thereby, the coefficients of thermal expansion (CTE) of the equivalent ZMG232 may be higher than the CTE of the LSM. The cross-section of equivalent ZMG232 did not allow diffusion of Cr element. Thus, coating by plasma-sputtering could prevent the growth of oxide and the diffusion of Cr element to avoid cathode poisoning and the decline of conductivity in SOFC at high temperature.  相似文献   

8.
Cathode materials Nd2 − xSrxNiO4 were prepared by the glycine-nitrate process and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), AC impendence spectroscopy and DC polarization method, respectively. The results show that no reaction occurred between the electrode and the CGO electrolyte at 1100 °C and the electrode formed good contact with the electrolyte after being sintered at 1000 °C for 4 h. The rate-limiting step for oxygen reduction reaction on Nd1.6Sr0.4NiO4 electrode changed with oxygen partial pressure and measurement temperature. The Nd1.6Sr0.4NiO4 electrode gave a polarization resistance of 0.93 Ω cm2 at 700 °C in air, which indicates that Nd2 − xSrxNiO4 electrode is a promising cathode material for intermediate-temperature solid oxide fuel cell (IT-SOFC).  相似文献   

9.
The composite cathodes of La0.4Ce0.6O1.8 (LDC)–La0.8Sr0.2MnO3 (LSM)–8 mol% yttria-stabilized zirconia (YSZ) with different LDC contents were investigated for anode-supported solid oxide fuel cells with thin film YSZ electrolyte. The oxygen temperature-programmed desorption profiles of the LDC–LSM–YSZ composites indicate that the addition of LDC increases surface oxygen vacancies. The cell performance was improved largely after the addition of LDC, and the best cell performance was achieved on the cells with the composite cathodes containing 10 wt% or 15 wt% LDC. The electrode polarization resistance was reduced significantly after the addition of LDC. At 800 °C and 650 °C, the polarization resistances of the cell with a 10 wt% LDC composite cathode are 70% and 40% of those of the cell with a LSM–YSZ composite cathode, respectively. The impedance spectra show that the processes associated with the dissociative adsorption of oxygen and diffusion of oxygen intermediates and/or oxygen ions on LSM surface and transfer of oxygen species at triple phase boundaries are accelerated after the addition of LDC.  相似文献   

10.
The Nd1.7Sr0.3CuO4 (NSCu) material with perovsikite-related structure was synthesized and evaluated as a new cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The crystal structure, thermal expansion, electrical conductivity and electrochemical performance of NSCu have been investigated by X-ray diffraction, a dilatometer, DC four-probe method, AC impedance and cyclic voltammetry (CV) techniques. The polarization resistances of NSCu cathode on Sm-doped ceria (SDC) electrolyte in air were 0.07 Ω cm2, 0.24 Ω cm2 and 1.60 Ω cm2 at 800 °C, 700 °C and 600 °C, respectively. The results demonstrated that both impedance and CV methods are consistent with high exchange current density i0 (390.7 mA/cm2 and 76.1 mA/cm2 at 800 °C and 700 °C.), making NSCu a promising cathode material for the IT-SOFCs based on doped ceria electrolytes.  相似文献   

11.
Cathodic materials Sm2−xSrxNiO4 (0.5 ≤ x ≤ 1.0) for an IT-SOFC (intermediate temperature solid oxide fuel cell) were prepared by the glycine-nitrate process and characterized by XRD, SEM, ac impedance spectroscopy and dc polarization measurements. The results showed that no reaction occurred between the Sm2−xSrxNiO4 electrode and the Ce0.9Gd0.1O1.9 (CGO) electrolyte at 1100 °C, and the electrode formed good contact with the electrolyte after sintering at 1000 °C for 2 h. The electrochemical properties of these cathode materials were studied using impedance spectroscopy at various temperatures and oxygen partial pressures. Sm1.0Sr1.0NiO4 exhibited the lowest cathodic overpotential. The area specific resistance (ASR) was 3.06 Ω cm2 at 700 °C in air.  相似文献   

12.
Different amount of metal silver particles are infiltrated into porous Sm1.8Ce0.2CuO4 (SCC) scaffold to form SCC–Ag composite cathodes. The chemical stability, microstructure evolution and electrochemical performance of the composite cathode are investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and AC impedance spectroscopy respectively. The composite cathode exhibits enhanced chemical stability. The metal Ag remains un-reacted with SCC and Ce0.9Gd0.1O1.95 (CGO) at 800 °C for 72 h. The polarization resistance of the composite cathode decreases with the addition of metal Ag. The optimum cathode SCC-Ag05 exhibits the lowest area specific resistance (ASR, 0.43 Ω cm2) at 700 °C in air. Investigation shows that metal Ag accelerates the charge transfer process in the composite cathode, and the rate limiting step for electrochemical oxygen reduction reaction (ORR) changes to oxygen dissociation and diffusion process.  相似文献   

13.
A microwave-induced monomer gelation and gel combustion synthesis process was successfully developed to synthesize well-dispersed Pr0.35Nd0.35Sr0.3MnO3−δ (PNSM)/YSZ composite cathode powders for tubular solid oxide fuel cells (SOFCs). The thermo-gravimetric (TG) analysis of as-prepared ash indicated the decomposition process of most of metal nitrates during gel combustion. The X-ray diffraction (XRD) pattern of the powders calcined at 1000 °C showed only pure PNSM and YSZ phase. Transmission electron microscopy (TEM) revealed that the morphology of powders was characterized with the YSZ particles enwrapped by fine PNSM particles so that PNSM/YSZ composite powders were much better-dispersed compared with the powders made simply by mechanical mixing process. The cell made from PNSM/YSZ composite powder showed lower cathode ohmic resistance and polarization resistance, and produced higher power density subsequently.  相似文献   

14.
Single-chamber solid oxide fuel cells (SC-SOFCs), which apply fuel-oxidant (air) gas mixture as the atmosphere for both anode and cathode, are receiving many interests recently. This study aims to clarify the mechanism of oxygen reduction and methane oxidization over La0.8Sr0.2MnO3 (LSM) cathode in SC-SOFCs by an electrochemical method in combination with mass spectrometry (MS). Before cathodic polarization, a large polarization resistance (Rp) for oxygen reduction reaction (ORR) was observed and methane did not cause obvious effect on ORR because of the weak adsorption of methane over LSM surface. Cathodic polarization could decrease the Rp obviously due to the in-situ creation of oxygen vacancies; methane likely adsorbed on those oxygen vacancy sites to enhance its effect on ORR. Both the anodic and cathodic polarizations significantly increased the rate of methane oxidation over LSM electrode; in particular, the pumped oxygen anion was highly active for methane oxidation.  相似文献   

15.
Nano-crystalline Sr2MgMoO6−δ (SMMO) powders were synthesized successfully by a novel sol–gel thermolysis method using a unique combination of polyvinyl alcohol (PVA) and urea. The decomposition behavior of gel precursor was studied by thermogravimetric-differential thermal analysis (TG/DTA) and the results showed that the double-perovskite phase of SMMO began to form at 1000 °C. The microstructure of the samples had been investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), selected area electron diffraction (SAED), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). XRD patterns confirmed that well-crystalline double-perovskite SMMO powders were obtained by calcining at 1450 °C for 12 h. TEM morphological analysis showed that SMMO powders had a mean particle size around 50–100 nm. The SAED pattern and Raman spectroscopy showed that the SMMO powders were nano-polycrystalline well-developed A(B′0.5B″0.5)O3 type perovskite material. The XPS results demonstrated that the Mo ions in SMMO had been reduced after exposure to H2. The electric property was studied by four-probe method. The results showed that conductivity was 8.64 S cm−1 in 5.0% H2/Ar at 800 °C and the activation energies at low temperatures (400–640 °C) and high temperatures (640–800 °C) are about 21.43 and 6.59 kJ mol−1, respectively.  相似文献   

16.
Porous strontium doped lanthanum manganite (LSM)-yttria-stabilized zirconia (YSZ) composite has been made by an impregnation method as oxygen electrodes for solid oxide electrolysis cells. X-ray diffraction and SEM results showed that LSM powders with well-crystallized perovskite phase uniformly distributed in the porous YSZ matrix. Impedance spectra and voltage-current density curves were measured as a function of absolute humidity at different temperatures to characterize the cell performance. The LSM infiltrated cell has an area specific resistance (ASR) of 0.20 Ω cm2 at 900 °C at open circuit voltage with 50% absolute humidity (AH), which is relatively lower than that of the cell with LSM-YSZ oxygen electrode made by a conventionally mixing method. Electrolysis cell with LSM infiltrated oxygen electrode has demonstrated stable performance under electrolysis operation with 0.33 A/cm2 and 50 vol.% AH at 800 °C.  相似文献   

17.
A dense membrane of Ce0.9Gd0.1O1.95 on a porous cathode based on a mixed conducting La0.6Sr0.4Co0.2Fe0.8O3−δ was fabricated via a slurry coating/co-firing process. With the purpose of matching of shrinkage between the support cathode and the supported membrane, nano-Ce0.9Gd0.1O1.95 powder with specific surface area of 30 m2 g−1 was synthesized by a newly devised coprecipitation to make the low-temperature sinterable electrolyte, whereas 39 m2 g−1 nano-Ce0.9Gd0.1O1.95 prepared from citrate method was added to the cathode to favor the shrinkage for the La0.6Sr0.4Co0.2Fe0.8O3−δ. Bi-layers consisting of <20 μm dense ceria film on 2 mm thick porous cathode were successfully fabricated at 1200 °C. This was followed by co-firing with NiO–Ce0.9Gd0.1O1.95 at 1100 °C to form a thin, porous, and well-adherent anode. The laboratory-sized cathode-supported cell was shown to operate below 600 °C, and the maximum power density obtained was 35 mW cm−2 at 550 °C, 60 mW cm−2 at 600 °C.  相似文献   

18.
Brownmillerite oxide Ca2Fe2−xCoxO5 (x = 0.2, 0.4, 0.6) was characterized by XRD, SEM and electrochemical impedance spectrum (EIS), respectively. Ca2Fe2−xCoxO5 has no reaction with Sm0.2Ce0.8O1.9 (SDC) electrolyte at 1100 °C for 10 h in air. The thermal expansion coefficient (TEC) of Ca2Fe2−xCoxO5 increased with increasing Co content, and the TEC value was compatible with SDC. The electrode properties of Ca2Fe2−xCoxO5 were studied under various temperatures and oxygen partial pressures. The polarization resistance (Rp) of Ca2Fe2−xCoxO5 with x = 0.2, 0.4 and 0.6 are 0.23, 0.48 and 1.05 Ω cm2 at 700 °C in air, respectively. The rate-limiting step for oxygen reduction reaction was the charge transfer process. Ca2Fe1.8Co0.2O5 cathode exhibits the lowest overpotential of about 50 mV at a current density of 70 mA cm−2 at 700 °C in air.  相似文献   

19.
Computational and experimental work directed at exploring the electrochemical properties of tetrahedrally coordinated Mn in the +5 oxidation state is presented. Specific capacities of nearly 700 mAh g−1 are predicted for the redox processes of LixMnO4 complexes based on two two-phase reactions. One is topotactic extraction of Li from Li3MnO4 to form LiMnO4 and the second is topotactic insertion of Li into Li3MnO4 to form Li5MnO4. In the experiments, it is found that the redox behavior of Li3MnO4 is complicated by disproportionation of Mn5+ in solution to form Mn4+ and Mn7+ and by other irreversible processes; although an initial capacity of about 275 mAh g−1 in lithium cells was achieved. Strategies based on structural considerations to improve the electrochemical properties of MnO4n complexes are given.  相似文献   

20.
Ceria is proposed as an additive for La0.8Sr0.2MnO3 (LSM) cathodes in order to increase both their thermal stability and electrochemical properties after co-sintering with an yttria-stabilized zirconia (YSZ) electrolyte at 1350 °C. Results show that LSM without CeO2 addition is unstable at 1350 °C, whereas the thermal stability of LSM is drastically improved after addition of CeO2. In addition, results show a correlation between CeO2 addition and the maximum power density obtained in 300 μm thick electrolyte-supported single cells in which the anode and modified cathode have been co-sintered at 1350 °C. Single cells with cathodes not containing CeO2 produce only 7 mW cm−2 at 800 °C, whereas the power density increases to 117 mW cm−2 for a CeO2 addition of 12 mol%. Preliminary results suggest that CeO2 could increase the power density by at least two mechanisms: (1) incorporation of cerium into the LSM crystal structure, and (2) by modification or reduction of La2Zr2O7 formation at high temperature. This approach permits the highest LSM-YSZ co-sintering temperature so far reported, providing power densities of hundreds of mW cm−2 without the need for a buffer layer between the LSM cathode and YSZ electrolyte. Therefore, this method simplifies the co-sintering of SOFC cells at high temperature and improves their electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号