首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pd-Co and Pd catalysts were prepared by the impregnation synthesis method at low temperature on multi-walled carbon nanotubes (MWCNTs). The nanotubes were synthesized by spray pyrolysis technique. Both catalysts were obtained with high homogeneous distribution and particle size around 4 nm. The morphology, composition and electrocatalytic properties were investigated by transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray analysis, X-ray diffraction and electrochemical measurements, respectively. The electrocatalytic activity of Pd and PdCo/MWCNTs catalysts was investigated in terms of formic acid electrooxidation at low concentration in H2SO4 aqueous solution. The results obtained from voltamperometric studies showed that the current density achieved with the PdCo/MWCNTs catalyst is 3 times higher than that reached with the Pd/MWCNTs catalyst. The onset potential for formic acid electrooxidation on PdCo/MWCNTs electrocatalyst showed a negative shift ca. 50 mV compared with Pd/MWCNTs.  相似文献   

2.
A novel Pd electrocatalyst is developed by self-assembly of Pd nanopartilces on phosphomolybdic acid (HPMo)-poly(diallyldimethylammonium chloride) (PDDA)-functionalized multiwalled carbon nanotubes supports (Pd/HPMo-PDDA-MWCNTs). The as-synthesized Pd/HPMo-PDDA-MWCNTs were characterized by TEM, EDS mapping, Raman spectra, X-ray photoelectron spectroscopy, electrochmeical CO stripping and cyclic voltammetry techniques. Pd nnaoparticles deposited on HPMo-PDDA-MWCNTs are in the range of 3.1 nm with uniform distributon. Pd/HPMo-PDDA-MWCNT catalysts have lower overpotential for COad oxidation manifested as lower peak and onset potentials as compared to acid-treated MWCNTs supported Pd (Pd/AO-MWCNTs) and carbon supported Pd catalysts (Pd/C). Pd/HPMo-PDDA-MWCNTs catalysts also exhibit a much higher electrocatalytic activity and stability for formic acid oxidation reaction as compared to that on Pd/AO-MWCNTs and Pd/C. The high electrocatalytic activities of Pd/HPMo-PDDA-MWCNTs catalysts are most likely related to highly dispersed and fine Pd nanoparticles as well as synergistic effects between Pd and HPMo immobilized on PDDA-functionalized MWCNTs.  相似文献   

3.
The hydrothermal synthesis of a novel Pd electrocatalyst using copper phthalocyanine-3,4′,4″,4′″-tetrasulfonic acid tetrasodium salt (TSCuPc) functionalized multi-walled carbon nanotubes (MWCNTs) composite as catalyst support for Pd nanoparticles is reported. The prepared nanocomposites were characterized by UV–vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical tests. It is found that Pd nanoparticles are uniformly deposited on the surface of TSCuPc-MWCNTs, and their dispersion and electrochemical active surface area (ECSA) are significantly improved. Studies of cyclic voltammetry and chronoamperometry demonstrate that the Pd/TSCuPc-MWCNTs exhibits much higher electrocatalytic activity and stability than the Pd/AO-MWCNTs catalyst for formic acid oxidation. This study implies that the as-prepared Pd/TSCuPc-MWCNTs will be a promising candidate as an anode electrocatalyst in direct formic acid fuel cell (DFAFC).  相似文献   

4.
Pd nanoparticles supported on the WO3/C hybrid are prepared by a two-step procedure and the catalysts are studied for the electrooxidation of formic acid. For the purpose of comparison, phosphotungstic acid (PWA) and sodium tungstate are used as the precursor of WO3. Both the Pd-WO3/C catalysts have much higher catalytic activity for the electrooxidation of formic acid than the Pd/C catalyst. The Pd-WO3/C catalyst prepared from PWA shows the best catalytic activity and stability for formic acid oxidation; it also shows the maximum power density of approximately 7.6 mW cm−2 when tested with a small single passive fuel cell. The increase of electrocatalytic activity and stability is ascribed to the interaction between the Pd and WO3, which promotes the oxidation of formic acid in the direct pathway. The precursors used for the preparation of the WO3/C hybrid support have a great effect on the performance of the Pd-WO3/C catalyst. The WO3/C hybrid support prepared from PWA is beneficial to the dispersion of Pd nanoparticles, and the catalyst has potential application for direct formic acid fuel cell.  相似文献   

5.
Functionalization step is generally prerequisite to immobilize metal nanoparticles on multi-walled carbon nanotubes (MWCNTs) for production of a high efficient electrocatalyst. We herein report a novel method to functionalize MWCNTs with 1,10-phenanthroline (phen-MWCNTs) as a catalyst support for Pd nanoparticles. Raman spectroscopic analysis results reveal that this phen functionalization method can preserve the integrity and electronic structure of MWCNTs and provide the highly effective functional groups on the surface for Pd nanoparticles. According to the transmission electron microscopy (TEM) measurements, the as-prepared Pd nanop articles are evenly deposited on the surface of the phen-MWCNTs without obvious agglomeration, and the average particle size of the Pd nanoparticles is 2.3 nm. Electrochemical measurements demonstrate that the as-prepared Pd/phen-MWCNTs catalyst has a better electrocatalytic activity and stability for the oxidation of formic acid than Pd catalyst on acid-treated MWCNTs. It is concluded that the as-prepared Pd/phen-MWCNTs would be a potential candidate as an anode electrocatalyst in direct formic acid fuel cell (DFAFC).  相似文献   

6.
It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd–Ir (Pd–Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd–Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode. This is attributed to that Ir can promote the oxidation of formic acid at Pd through the direct pathway because Ir can decrease the adsorption strength of CO on Pd. However, when the content of Ir in the Pd–Ir/C catalyst is too high the electrocatalytic activity of the Pd–Ir/C catalyst would be decreased because Ir has no electrocatalytic activity for the oxidation of formic acid.  相似文献   

7.
A novel electrocatalyst of PdPtNi ternary alloy nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) for formic acid oxidation (FAO) reaction is synthesized by a simple hydrogen co-reduction process. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS). It is found that highly dispersed PdPtNi alloy nanoparticles of ca. 2.56 nm are homogeneously deposited on the MWCNT surface, and the alloying with Pt and Ni alters the electronic structure of Pd atoms with the downshift of Pd d-band center. Studies of cyclic voltammetry and chronoamperometry indicate that the electrocatalytic activity and durability of the PdPtNi/MWCNT for FAO are significantly enhanced as compared with the PdPt/MWCNT and commercial Pd/C catalysts. This study implies that the prepared PdPtNi/MWCNT composite is a promising anode electrocatalyst of direct formic acid fuel cells.  相似文献   

8.
Pd/titanium dioxide nanotubes (Pd/TiO2-NTs) catalysts were prepared by a simple reduction method using TiO2-NTs as support. The structure and morphology of the resulting Pd/TiO2-NTs were characterized by transmission electron microscopy and X-ray diffraction. The results showed that Pd nanoparticles with a size range from 6 to 13 nm were well-dispersed on the surface of TiO2-NTs. The electrocatalytic properties of Pd/TiO2-NTs catalysts for hydrazine oxidation were also investigated by cyclic voltammetry. Compared to that of pure Pd particles and Pd/TiO2 particles, Pd/TiO2-NTs catalyst showed much higher electrochemical activity. This may be attributed to the uniform dispersion of Pd nanoparticles on TiO2-NTs, smaller particle size and unique properties of TiO2-NTs support. In addition, the mechanism of hydrazine electrochemical oxidation catalyzed by Pd/TiO2-NTs are also investigated. The oxidation of hydrazine was an irreversible process, which might be controlled by diffusion process of hydrazine.  相似文献   

9.
Functionalized benzenesulfonic groups were grafted onto the surface of multi-walled carbon nanotubes (MWCNTs) supported Pd catalysts in direct methanol fuel cells by a new and simple in situ radical polymerization of 4-styrenesulfonate and isoamyl nitrite. The resultant sulfonated MWCNTs-supported Pd catalysts (S-MWCNTs/Pd) were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectrometry measurements. Electrochemical characterizations of S-MWCNTs/Pd catalysts for methanol electro-oxidation in alkaline solution were investigated by cyclic voltammetry techniques. These results showed that S-MWCNTs/Pd exhibited higher electrocatalytic activity, enhanced CO tolerance and better stable life than did that with the unsulfonated counterparts, mainly due to the easier access with methanol and well dispersed distribution of the S-MWCNTs/Pd catalysts in water. In addition, compared with traditional sulfonation of MWCNTs, this new approach is more advantageous to make small and uniform dispersion of Pd particles loaded onto the surfaces of sulfonated MWCNTs, indicating it is a simple, rapid, and efficient method to functionalize MWCNTs.  相似文献   

10.
In this study, nitrogen (N) and boron (B) heteroatom doped graphene aerogel support materials have been employed for the dispersion of platinum (Pt) nanoparticles to improve their electrocatalytic activities for formic acid and methanol oxidation. Pt nanoparticles dispersed on the heteroatom doped graphene aerogel (GA) support materials by a microwave heating method. The as-prepared catalysts were characterized by a variety of means such as SEM, EDS, ICP-MS, TEM, XRD, BET and XPS. The electrocatalytic activities, stability and impedance of the synthesized catalysts were investigated for formic acid and methanol oxidation using electrochemical measurements. The 3D graphene aerogels have higher capacitive currents than the Vulcan XC-72 in the double layer region. The results of electrochemical chronoamperometry tests reveal that Pt/BGA shows the best stability for methanol oxidation and also exhibited superior electrocatalytic activity towards the oxidation of methanol in cyclic voltammetry. In addition to, heteroatom doped GA supported catalysts higher activity compared to the Vulcan XC-72 supported catalyst for formic acid oxidation.  相似文献   

11.
In the present research, nanostructured Pd–Cd alloy electrocatalysts with different compositions were produced using the electrodeposition process. The morphology of the samples was studied by scanning electron microscopy analysis. Also, the elemental composition of the samples was determined by energy-dispersive X-ray spectroscopy and elemental mapping tests. Tafel polarization and electrochemical impedance spectroscopy methods were employed to determine the electrochemical corrosion properties of the synthesized samples in a solution containing 0.5 M sulfuric acid and 0.1 M formic acid. The linear sweep voltammetry, cyclic voltammetry, and chronoamperometry techniques were also employed to evaluate the electrocatalytic activity of prepared samples toward the oxidation of formic acid. In this respect, the influence of some factors such as formic acid and sulfuric acid concentrations and also potential scan rate was investigated. Compared to the pure Pd sample, the Pd–Cd samples were more reactive for the oxidation of formic acid. Besides, the sample with a lower amount of Pd (Pd1·3Cd) demonstrated much higher electrocatalytic activity than the Pd7·1Cd and Pd2·1Cd samples. The observed high mass activity of 15.06 A mg?1Pd for the Pd1·3Cd sample which is 21.1 times higher than Pd/C is an interesting result of this study.  相似文献   

12.
A catalyst composed of 2-acrylamido-2-methyl-1-propane sulfonic acid (PAMPs) modified graphene oxide (GO) as the supporting material (PAMPs/GO) and electrodeposited monometallic and bimetallic catalysts (Pt and/or Pd) as the active catalytic component was fabricated to enhance the formic acid oxidation. The morphology of the prepared catalysts was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), while the chemical compositions were identified by energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Functional groups of the supporting materials and catalysts were identified by Fourier transform infrared (FT-IR) spectroscopy. The electrochemical measurements of the synthesized catalysts were evaluated by cyclic voltammetry (CV) and chronoamperometry (CA), respectively. The kinetics of formic acid oxidation on the synthesized catalysts were determined by Tafel extrapolation of linear sweep voltammograms. The CO tolerance of the electrocatalyst was examined by CO stripping measurements. The results showed that the catalysts with PAMPs exhibited much higher electrocatalytic activity and longer-term stability for formic oxidation than the catalyst without PAMPS. In addition, the 3Pt3Pd/10%PAMPs/GO catalyst showed the greatest catalytic activity, stability, and fastest charge transfer kinetics when compared to other bimetallic catalysts and monometallic catalysts. In conclusion, modifying the GO surface with PAMPs can improve the efficiency of the electrocatalyst activity of Pt/Pd catalysts. The 3Pt3Pd/10%PAMPs/GO catalyst is a promising electrocatalyst for the enhancement of formic acid oxidation.  相似文献   

13.
PtRuMoOx and PtRuWOx catalysts supported on multi-wall carbon nanotubes (MWCNTs) are prepared by ultrasonic-assisted chemical reduction method. XRD measurements indicate that Pt exists as face-centered cubic structure, Ru is alloyed with platinum, and the metal oxides exist as an amorphous structure. TEM pictures show that PtRuMoOx and PtRuWOx catalysts are well dispersed on the surface of MWCNTs with the particle size of about 3 nm and a narrow particle size distribution. The electrochemical properties of the catalysts for methanol electrooxidation are studied by cyclic voltammetry (CV), chronoamperometry (CA) and chronopotentiometry (CP). The onset potentials for methanol oxidation on PtRuMoOx and PtRuWOx are more negative than that of pure Pt catalyst, shifting negatively by about 0.20 V and have better electrocatalytic activities than PtRu/MWCNTs.  相似文献   

14.
To improve the electrocatalytic activity of alcohol oxidation, functionalized carbon nanotubes (CNTs) decorated with various compositions of metal alloy catalyst nanoparticles (PtxMy, where M = Au and Pd; x and y = 1–3) have been prepared via reduction. The CNTs were treated with an nitric acid solution to promote the oxygen-containing functional groups and further load the metal nanoparticles. X-ray diffraction (XRD) scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to probe the formation of catalyst microstructure morphologies. A uniform dispersion of the spherical metal particles with diameters of 2–6 nm was acquired. The catalytic properties of the catalyst for oxidation were thoroughly studied by electrochemical methods that involved in the cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). To maximize the electrocatalytic performance and minimize the metal integration of the loaded CNTs, various compositions of active catalysts with large active surface areas are expected to increase the activity of the enhanced catalysts for alcohol oxidation. Most of the prepared bimetallic catalysts have better alcohol oxidation kinetics than commercial PtRu/C. Among the prepared catalysts, the PtAu/CNTs and PtPd/CNTs catalysts with high electrochemically active surface area (ECSA) show excellent activities for alcohol oxidation resulting in their low onset potentials, small charge transfer resistances and high peak current densities and If/Ib ratios, stability, and better tolerance to CO for alcohol oxidation. The integration of Pt and different metal species with different stoichiometric ratios in the CNTs support affects the electrochemical active surface area achieved in the catalytic oxidation reactions.  相似文献   

15.
Two novel catalysts for anode oxidation of formic acid, Pd2Co/C and Pd4Co2Ir/C, were prepared by an organic colloid method with sodium citrate as a complexing agent. These two catalysts showed better performance towards the anodic oxidation of formic acid than Pd/C catalyst and commercial Pt/C catalyst. Compared with Pd/C catalyst, potentials of the anodic peak of formic acid at the Pd2Co/C and Pd4Co2Ir/C catalyst electrodes shifted towards negative value by 140 and 50 mV, respectively, meanwhile showed higher current densities. At potential of 0.05 V (vs. SCE), the current density for Pd4Co2Ir/C catalyst is as high as up to 13.7 mA cm−2, which is twice of that for Pd/C catalyst, and six times of that for commercial Pt/C catalyst. The alloy catalysts were nanostructured with a diameter of ca. 3–5 nm and well dispersed on carbon according to X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. The composition of alloy catalysts was analyzed by energy dispersive X-ray analysis (EDX). Pd4Co2Ir/C catalyst showed the highest activity and best stability making it the best potential candidate for application in a direct formic acid fuel cell (DFAFC).  相似文献   

16.
The kinetic parameters of formic acid oxidation on a carbon supported Pd electrode, such as the charge transfer coefficient (α) and apparent diffusion coefficient (D) are obtained by applying the technique of normal pulse voltammetry. The standard rate constant (k0) of formic acid oxidation on a Pd/C electrode is estimated. The results show that formic acid oxidation is more sensitive to temperature at relatively high potential because the activation energy is significantly increased as the potential rose above 0.6 V.  相似文献   

17.
In this work, a self-supporting Pd–Cu bimetallic film with 3D porous structure was electrodeposited at the surface of glassy carbon electrode (GCE) using a facile double-template fabrication process, including hydrogen bubble templating method and galvanic replacement reaction, and its performance investigated as a catalyst for formic acid oxidation (FAO). The structure of the Cu/Pd porous film was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The electrocatalytic activity of the as-prepared catalysts with high surface areas were evaluated in sulfuric acid solution containing 1 M formic acid using cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The Cu/Pd porous structure exhibited significantly high current densities of formic acid oxidation compared to the Cu/Pd particles film catalyst. The effects of galvanic replacement time and concentration of formic acid on the catalytic activity of as-prepared electrode for FAO were comparatively investigated.  相似文献   

18.
19.
The surface composition and catalytic properties of Pd–Fe bimetallic catalysts with identical bulk composition can be continuously tuned by treatment at different temperatures. The activity of these catalysts in formic acid oxidation was related to the treatment temperature. The thermal treatment temperatures ranged from 400 to 600 °C. The Pd–Fe nanoparticles are characterized by an array of analytical techniques including TEM (transmission electron microscopy), XRD (X-ray diffraction), ICP (inductively coupled plasma) and HS-LEIS (low energy ion scattering spectroscopy). The electrocatalytic activity is examined using cyclic voltammetric and chronoamperometric measurements. The Pd–Fe/C catalyst with 500 °C shows the highest electrocatalytic activity for formic acid oxidation, with a current activity 3 times higher than that of before treated Pd–Fe/C catalyst, 5.6 times higher than that of commercial Pt/C catalyst. The migration of Pd to the surface on the nanoparticle catalysts as well as the electrochemical active surface area of the PdFe–H catalysts was shown to play a major role in enhancing the electrocatalytic activity for catalyst. These findings provided important insights into the correlation between the electrocatalytic activity and the treatment temperature of the nanoengineered bimetallic catalysts.  相似文献   

20.
《Journal of power sources》2006,162(2):1094-1098
Palladium (Pd) nanoparticles were dispersed on iodinated multi-walled carbon nanotubes (I-MWNTs) by the aqueous solution reduction of Pd(NO3)2 with formaldehyde. The structure and nature of the resulting Pd-MWNT composites were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of the Pd-MWNT modified glassy carbon electrode (Pd-MWNT/GCE) for formaldehyde oxidation have been investigated by cyclic voltammetry; high electrocatalytic activity of the Pd-MWNT/GCE can be observed. This may be attributed to the high dispersion of palladium catalysts and the particular properties of MWNT supports. The results imply that the Pd-MWNT composite has good potential applications in fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号