首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inorganic–organic hybrid maghemite (γ-Fe2O3)/polypyrrole (PPy) was synthesized and evaluated as cathode-active material for room temperature lithium batteries. The nanometer-sized core–shell structure of the hybrid consisting of the maghemite core with surface modified by PPy was evidenced from the morphological examination. The cathode fabricated with the as-prepared hybrid material delivered an initial discharge capacity of 233 mAh g−1 and a reversible capacity of ∼62 mAh g−1 after 50 charge–discharge cycles. A much higher performance with an initial discharge capacity of 378 mAh g−1 and a reversible capacity of ∼100 mAh g−1 was achieved with the cathode based on the segregated active material, which was obtained by subjecting the as-prepared hybrid material to an additional ball-milling process. The study demonstrates the promising lithium insertion characteristics of the nanometer-sized core–shell maghemite/PPy particles prepared under optimized conditions for application in secondary batteries.  相似文献   

2.
The core–shell type cathode material Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 (CS) for Li-ion battery was synthesized via co-precipitation method. The electrochemical and thermal properties of the core–shell structured Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 were compared with those of the average composition of core–shell Li[Ni0.74Co0.08Mn0.18]O2 (ACCS) and the mixture of the core Li[Ni0.8Co0.1Mn0.1]O2 and the shell Li[Ni0.5Mn0.5]O2 material (MCS). The CS shows the enhanced electrochemical properties in a high voltage range (4.5 V and 4.6 V) as well as the typical cut-off voltage range (4.3 V). The capacity retentions of CS, core, and ACCS material were 94.2% (176.9 mAh g−1), 86.6% (172 mAh g−1), and 88.4% (169.3 mAh g−1) after 120 cycles, respectively.  相似文献   

3.
Polypyrrole (PPy) nanotubes were synthesized by using the complex of methyl orange (MO)/FeCl3 as a template. Then the core–shell polypyrrole/polyaniline (PPy/PANI) composite was prepared by in situ chemical oxidation polymerization of aniline on the surface of PPy nanotubes. The morphology and molecular structure were characterized by transmission electron microscopy (TEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). TEM images confirmed that the composite was core–shell nanotubes. The electrochemical properties of the PPy/PANI composite electrode were investigated by cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS). The electrochemical experiments showed that the specific capacitance of the PPy/PANI composite was 416 F g−1 in 1 M H2SO4 electrolyte and 291 F g−1 in 1 M KCl electrolyte. Furthermore, the composite electrode exhibited a good rate capability and maintained 91% of initial capacity at a current density of 15 mA cm−2 in 1 M H2SO4 electrolyte.  相似文献   

4.
We report a one-pot method to synthesize CoO/C hybrid microspheres via a solvothermal approach. The resulting samples were characterized by thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy and charge–discharge test. X-ray diffraction analysis revealed that the as-prepared samples possessed poor crystalline characteristics and were transformed into crystalline materials after thermal treatment. Field-emission scanning electron microscope images showed that the surfaces of these as-prepared spheres were relatively smooth and of about 2.2 μm in diameter. The diameters of the spheres kept unchanged after being annealed at 800 °C in a high purity nitrogen atmosphere under ambient pressure. The preliminary electrochemical test found that the annealed CoO/C hybrid microspheres exhibited an ultrahigh initial discharge capacity of 1481.4 mAh g−1 in the potential range of 3.0–0.01 V. This value was much higher than that of CoO nanoparticles. Although the capacity of the second discharge cycle decayed to 506.2 mAh g−1, the annealed CoO/C hybrid microspheres anode exhibited very stable reversible capacity at about 345 mAh g−1 only after 10 cycles. This rapid stabilization ability was attributed to the matrix effect of carbon, which may effectively prevent the aggregation of small particles during charging–discharging process.  相似文献   

5.
Tin phosphates with various mesopore ratios are synthesized with surfactants as templates. The mesopore ratios of the tin phosphates are controlled by adjusting the surfactant: inorganic precursor ratios. As an anode material for Li-ion batteries, the mesoporous and non-mesoporous mixture with a high mesopore ratio exhibits enhanced cycling stability. Compared with the ∼34% (∼135 mAh g−1) capacity retention after 50 cycles of the non-mesoporous tin phosphate (between 2.5 and 0.001 V), the tin-phosphate anodes with mesopore ratios of 42, 82 and 100% show capacity retentions that are enhanced by more than 50%, showing charge capacities of ∼260, ∼290, and ∼325 mAh g−1, respectively (after 50 cycles). The mesoporous structures may alleviate the large volume change of the Sn nanoparticles embedded in the lithium-phosphate matrix during charge–discharge. Cycling tests of the 100% mesoporous tin phosphate between 0.8 and 0.001 V exhibit no capacity decay: ∼325 mAh g−1 remains after 50 cycles. This is probably because re-oxidation of metallic tin with lithium-phosphate matrix does not occur.  相似文献   

6.
Ag@Pt core–shell nanoparticles with different Ag/Pt ratios were supported on multi walled carbon nanotubes (MWCNTs) and used as electrocatalysts for PEMFC. The morphology of the electrocatalyst samples was characterized by XRD and HRTEM. It was found that the Ag@Pt/MWCNTs catalyst exhibited a core–shell nanostructure. And the CV and LSV results demonstrated that such core–shell materials exhibited attractive electrocatalytic activity. Moreover, the specific electrochemically active area (EAS) of the Ag@Pt/MWCNTs catalyst is 70.63 m2 g−1, which is higher than the values reported in the literature.  相似文献   

7.
The influence of a long-time heat treatment of hard carbon in the presence of iron catalyst on its structural properties and electrochemical performance is concerned in terms of potential application as anode material for lithium-ion cell. Glass-like carbon spheres obtained by carbonization of phenol resin were catalytically graphitized by heat treatment at temperature 1000 °C in argon atmosphere for 20 h and 100 h. After this process iron was completely removed from the product of reaction. The original carbon was entirely useless as anode for Li-ion cell because of its extremely poor reversible capacity (54 mAh g−1). Due to heat treatment composite materials consisting of microcrystalline graphite admixed with turbostratic carbon were produced. Modified carbons were tested as anode materials using gradually increasing current density. Based on electrochemical measurements a mixed intercalation/insertion mechanism for storage of lithium ions was concluded. Discharge capacity of carbon heat treated for 100 h attained value of 276 mAh g−1 and its reversible capacity appeared to be better than that of flaky graphite upon discharging at current density in the range 50-250 mA g−1.  相似文献   

8.
Nanostructured composite electrodes based on iron and copper oxides for applications in Li-ion batteries are produced by Electrostatic spray pyrolysis (ESP). The electrodes are directly formed by electrospraying precursor solutions containing either iron or copper salts dissolved in N-methylpyrrolidone (NMP) together with polyvinylidene fluoride (PVdF) as binder. The morphology and the structure of the deposited electrodes are investigated by X-ray diffraction (XRD) and Transmission electron microscopy (TEM), which show that sub-micrometric deposits are formed as a composite of oxide nanoparticles of a few nanometers in a PVdF polymer matrix. Electrochemical characterization by cyclic voltammetry (CV) and galvanostatic charge-discharge tests demonstrate that the conversion reactions in these electrodes enable initial discharge capacities of about 800 mAh g−1 and 1550 mAh g−1 for CuO and Fe2O3, respectively. The capacity retention in both cases needs further improvements.  相似文献   

9.
In this study, a novel mesoporous carbon-encapsulated NiO nanocomposite is proposed and demonstrated for Li-ion battery negative electrode. The nanostructure of the electrode composes of an ordered mesoporous CMK-3 as a 3D nanostructured current collector with micorporous channels for Li+ transportation. In addition, exclusive formation of NiO nanoparticles in the confined space of the ordered mesoporous carbon is achieved using the hydrophobic encapsulation route. The half-cell assembled with the synthesized NiO/CMK-3 nanocomposite is able to deliver a high charge capacity of 812 mAh g−1 at the first cycle at a C-rate of 1000 mA g−1 and retained throughout the test with only 0.236% decay per cycle. Even the C-rate as high as 3200 mA g−1, a charge capacity of 808 mAh g−1 contributed by the NiO nanoparticles in CMK-Ni is obtained, which shows excellent rate capability for NiO with utilization close to 100%. The result suggests fast kinetics of conversion reaction for NiO with Li+. It also indicates the blockage of the pore channels by NiO nanoparticles does not take place in the synthesized NiO/CMK-3.  相似文献   

10.
The immiscible Al–Sn alloy thin films prepared by electron-beam deposition were first investigated as possible negative electrodes for lithium ion batteries. In the complex structure of the Al–Sn thin films, tiny Sn particles dispersed homogeneously in the Al active matrix. Their electrochemical characteristics were tested in comparison with the pure Al and Sn films. Cyclic voltammetry results indicated that the Li+-transport rates in these Al–Sn alloy films were significantly enhanced. Charge–discharge tests showed that the Al–Sn alloy film anodes had good cycle performance. The electrode with high Al content (Al–33 wt%Sn) delivered a high initial discharge capacity of 752 mAh g−1 while the electrode with high Sn content (Al–64 wt%Sn) had better cycleability with a stable specific capacity of about 300 mAh g−1 under 0.8 C rate. The good performance of these immiscible Al–Sn alloy film anodes was attributed to their unique microstructure. The mechanism of lithiation and delithiation reaction had been proposed based on cyclic voltammograms and impedance response of the Al–Sn alloy thin film electrodes. Our preliminary results demonstrate that the Al–Sn immiscible alloy is a potential candidate negative material for Li-ion battery.  相似文献   

11.
Reduced graphene oxide/tin oxide composite is prepared by homogenous coprecipitation. Characterizations show that tin oxide particles are anchored uniformly on the surface of reduced graphene oxide platelets. As an anode material for Li ion batteries, it has 2140 mAh g−1 and 1080 mAh g−1 capacities for the first discharge and charge, respectively, which is more than the theoretical capacity of tin oxide, and has good capacity retention with a capacity of 649 mAh g−1 after 30 cycles. The simple synthesis method can be readily adapted to prepare other composites containing reduced graphene oxide as a conducting additive that, in addition to supporting metal oxide nanoparticles, can also provide additional Li binding sites to, perhaps, further enhance capacity.  相似文献   

12.
A Si–Zn–C composite material is prepared by mechanical ball-milling and investigated as an anode material for lithium-ion batteries. Electrochemical tests show that the first charge and discharge capacities are approximately 852 and 607 mAh g−1, respectively, and that 91% of the initial discharge capacity of 607 mAh g−1 can be maintained for up to 40 cycles. This improved cycling performance is attributed to the use of the third element Zn. Li2ZnSi is partially formed at the interface between Si and Zn and graphite to provide superior cycling performance compared with that of the binary system.  相似文献   

13.
Three-dimensional Li2O–NiO–CoO composite thin-film electrodes deposited on stainless steel substrates were synthesized by the electrostatic spray deposition (ESD) technique at 240 and 295 °C. The morphology of the composite was investigated by scanning electron microscopy. X-ray diffraction indicated that the as-deposited films are composites of Li2O, NiO and CoO. The effects of the solvent used to dissolve the starting materials on the morphology and electrochemical performance of the thin-film electrodes were also investigated. It was found that the as-deposited thin-film electrodes exhibited a high reversible capacity (>800 mAh g−1 when cycled between 0.01 and 3 V at a cycling rate of 0.5 C), good capacity retention, and outstanding rate capability. The superior electrochemical performance may have resulted from the combination of the very porous structure and the three-dimensional network of the as-deposited thin-film electrodes, which contributed to a high surface area, favoured lithium-ion diffusion, and formed a stable integral structure. The thin-film electrodes could be promising anodes for use in high power and high energy density lithium-ion batteries.  相似文献   

14.
(NH4)0.5V2O5 nanobelt is synthesized by sodium dodecyl benzene sulfonate (SDBS) assisted hydrothermal reaction as a cathode material for Li-ion battery. The as-prepared (NH4)0.5V2O5 nanobelts are 50-200 nm in diameter and several micrometers in length. The reversible lithium intercalation behavior of the nanobelts has been evaluated by cyclic voltammetry, galvanostatic discharge-charge cycling, and electrochemical impedance spectroscopy. The (NH4)0.5V2O5 delivers an initial specific discharge capacity of 225.2 mAh g−1 between 1.8 and 4.0 V at 15 mA g−1, and still maintains a high discharge capacity of 197.5 mAh g−1 after 11 cycles. It shows good rate capability with a discharge capacity of about 180 mAh g−1 remaining after 40 cycles at various rates and excellent cycling stability with the capacity retention of 81.9% after 100 cycles at 150 mA g−1. Interestingly, the excess 120 mAh g−1 capacity in the first charge process is observed, most of which could be attributed to the extraction of NH4+ group, verified by Fourier transform Infrared (FT-IR) and X-ray diffraction (XRD) results.  相似文献   

15.
A macroporous SnO2/C composite anode material was synthesized using an organic template-assisted method. Polystyrene spheres were synthesized and used as template and lead to macroporous morphology with pores of 300-500 nm in diameter and a surface area of 54.7 m2 g−1. X-ray diffraction showed that the SnO2 nanoparticles are crystallized in a rutile P42/mnm lattice with the presence of Sn metal traces. The synthesized macroporous SnO2/C composite provided promising performance in lithium half cells showing a discharge capacity of 607 mAh g−1 after 55 cycles. It was found that the macroporous SnO2/C composite is stable and resistant to pulverization upon cycling.  相似文献   

16.
Transition metal borides and silicides prepared by mechanical alloying (MA) and chemical reduction methods (CR) were introduced to improve the corrosion resistance of magnesium-based hydrogen storage alloys. The additive of FeB prepared by MA can remarkably enhance the discharge capacity and cycling stability which has initial discharge capacity of 355.9 mA h g−1 and keeps 224 mA h g−1 after 100 cycles, and the exchange density I0 of MgNi–NiB(CR) electrodes is 344.80 mA g−1 but MgNi is only 67.6 mA g−1 which leads to the better rate capability of the composite alloys. The results of SEM characterization, cyclic charge–discharge tests, potentiodynamic polarization, linear polarization and AC impedance experiment show that the corrosion inhibition property of MgNi in alkaline is improved by transition metal boride and silicide additives.  相似文献   

17.
MoO2 synthesized through reduction of MoO3 with ethanol vapor at 400 °C was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Its electrochemical performance as an anode material for lithium ion battery was tested by cyclic voltammetry (CV) and capacity measurements. During the reduction process, the starting material (MoO3) collapsed into nanoparticles (∼100 nm), on the nanoparticles remains a carbon layer from ethanol decomposition. Rate capacity and cycling performance of the as-prepared product is very satisfactory. It displays 318 mAh g−1 in the initial charge process with capacity retention of 100% after 20 cycles in the range of 0.01–3.00 V vs. lithium metal at a current density of 5.0 mA cm−2, and around 85% of the retrievable capacity is in the range of 1.00–2.00 V. This suggests the application of this type of MoO2 as anode material in lithium ion batteries.  相似文献   

18.
MnO powder materials are investigated as anode active materials for Li-ion batteries. Lithium is stored reversibly in MnO through conversion reaction and interfacial charging mechanism, according to the results of ex situ XRD, TEM and galvanostatic intermittent titration technique. A layer of the solid electrolyte interphase with a thickness of 20-60 nm is covered on MnO particles after full insertion. MnO powder materials show reversible capacity of 650 mAh g−1 with average charging voltage of 1.2 V. It can deliver 400 mAh g−1 at a rate of 400 mA g−1. The cyclic performance of MnO is improved significantly after decreasing particle size and coating with a layer of carbon. Among observed transition metal oxides, MnO shows relatively lower voltage hysteresis (<0.7 V) between the discharging and the charging curves at 0.05 C. In addition to its environmental benign feature and high density (5.43 g cm−3), MnO seems a promising high capacity anode material for Li-ion batteries among transition metal oxides. However, the initial columbic efficiency is less than 65% and the voltage hysteresis is still too high. The origins of them are discussed.  相似文献   

19.
Mesoporous polyaniline/anatase TiO2 composite microspheres with the core-shell structure for lithium-ion battery applications are prepared via a facile hydrothermal route. The structure of as-prepared sample is characterized by electron microscopy (TEM), and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface area. It is suggested that the formation of the core-shell structure can be designated as a two-step assembly process induced by the polymerization of the aniline. The electrochemical tests demonstrate that the discharge capacity of the as-prepared polyaniline/anatase TiO2 microspheres can be stably retained at 157.1 mAh g−1 after 50th cycle at the high current density of 1500 mA g−1. The high rate performance of the as-prepared sample at various current densities from 200 to 2000 mA g−1 is also investigated. The discharge capacity of 123.9 mAh g−1 can be obtained at the high current density of 2000 mA g−1, which is about 73.4% of that at the low current density of 200 mA g−1 upon cycling, indicating that the as-prepared sample can endure great changes of various current densities to retain a good stability due to the core shell mesoporous structure.  相似文献   

20.
Hybrids consisting of single-walled carbon nanotubes (SWNTs) and tin nanoparticles are prepared on substrates as anode materials for lithium-ion batteries via two different techniques: (i) hybrid co-filtration by simultaneous vacuum filtration of SWNT/tin nanoparticle hybrid solutions and (ii) a combined technique comprised of vacuum filtration and electrochemical reduction. The resulting hybrid composites are of uniform thickness and consist of a homogeneous dispersion of tin nanoparticles in a SWNT network. In the hybrid films, the tin nanoparticles and SWNTs are in close contact with each other and the substrate. The hybrid films exhibit extended cycle life (capacity retention of 80% at 50th cycle), high power characteristics up to 1.75 mA cm−2, high electrode density up to 5 mg cm−2, and enhanced reversible capacities (535 mAh g−1 for composite electrode at 50th cycle) because the aggregation of tin nanoparticles is prevented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号