首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present dynamic model is developed to investigate the coupled reaction mechanisms in a DMFC and therein associated voltage losses in the catalyst layers. The model describes a complete five-layer membrane electrode assembly (MEA), with gas diffusion layers, catalyst layers and membrane. The analysis of the performance losses are mainly focused on the electrochemical processes. The model accounts for the crossover of both, methanol from anode to cathode and oxygen from cathode to anode. The reactant crossover results in parasitic internal currents that are finally responsible for high overpotentials in both electrodes, so-called mixed potentials. A simplified and general reaction mechanism for the methanol oxidation reaction (MOR) was selected, that accounts for the coverage of active sites by intermediate species occurring during the MOR. The simulation of the anode potential relaxation after current interruption shows an undershoot behavior like it was measured in the experiment [1]. The model gives an explanation of this phenomenon by the transients of reactant crossover in combination with the change of CO and OH coverages on Pt and Ru, respectively.  相似文献   

2.
Passive direct methanol fuel cells (DMFCs) are under development for use in portable applications because of their enhanced energy density in comparison with other fuel cell types. The most significant obstacles for DMFC development are methanol and water crossover because methanol diffuses through the membrane generating heat but no power. The presence of a large amount of water floods the cathode and reduces cell performance. The present study was carried out to understand the performance of passive DMFCs, focused on the water crossover through the membrane from the anode to the cathode side. The water crossover behaviour in passive DMFCs was studied analytically with the results of a developed model for passive DMFCs. The model was validated with an in‐house designed passive DMFC. The effect of methanol concentration, membrane thickness, gas diffusion layer material and thickness and catalyst loading on fuel cell performance and water crossover is presented. Water crossover was lowered with reduction on methanol concentration, reduction of membrane thickness and increase on anode diffusion layer thickness and anode and cathode catalyst layer thickness. It was found that these conditions also reduced methanol crossover rate. A membrane electrode assembly was proposed to achieve low methanol and water crossover and high power density, operating at high methanol concentrations. The results presented provide very useful and actual information for future passive DMFC systems using high concentration or pure methanol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A two-phase mass-transport model is employed to investigate the water transport behaviour through the membrane electrode assembly (MEA) of a liquid-feed direct methanol fuel cell (DMFC). Emphasis is placed on examining the effects of each constituent component design of the MEA, including catalyst layers, microporous layers and membranes, on each of the three water crossover mechanisms: electro-osmotic drag, diffusion, and convection. The results show that lowering the diffusion flux of water or enhancing the convection flux of water (termed as the back-flow flux) through the membrane are both feasible to suppress water crossover in DMFCs. It is found that the reduction in the diffusion flux of water can be mainly achieved through optimum design of the anode porous layers, as the effect of the cathode porous region on water crossover by diffusion is relatively smaller. On the other hand, the design of the cathode porous layers plays a more important role in increasing the back-flow flux of water from the cathode to anode.  相似文献   

4.
《Journal of power sources》2006,162(2):1232-1235
A vapor fed passive direct methanol fuel cell (DMFC) is proposed to achieve a high energy density by using pure methanol for mobile applications. Vapor is provided from a methanol reservoir to the membrane electrode assembly (MEA) through a vaporizer, barrier and buffer layer. With a composite membrane of lower methanol cross-over and diffusion layers of hydrophilic nanomaterials, the humidity of the MEA was enhanced by water back diffusion from the cathode to the anode through the membrane in these passive DMFCs. The humidity in the MEA due to water back diffusion results in the supply of water for an anodic electrochemical reaction with a low membrane resistance. The vapor fed passive DMFC with humidified MEA maintained 20–25 mW cm−2 power density for 360 h and performed with a 70% higher fuel efficiency and 1.5 times higher energy density when compared with a liquid fed passive DMFC.  相似文献   

5.
A three-dimensional, two-phase, multi-component model has been developed for a liquid-fed DMFC. The modeling domain consists of the membrane, two catalyst layers, two diffusion layers, and two channels. Both liquid and gas phases are considered in the entire anode, including the channel, the diffusion layer and the catalyst layer; while at the cathode, two phases are considered in the gas diffusion layer and the catalyst layer but only single gas phase is considered in the channels. For electrochemical kinetics, the Tafel equation incorporating the effects of two phases is used at both the cathode and anode sides. At the anode side the presence of gas phase reduces the active catalyst areas, while at the cathode side the presence of liquid water reduces the active catalyst areas. The mixed potential effects due to methanol crossover are also included in the model. The results from the two-phase flow mode fit the experimental results better than those from the single-phase model. The modeling results show that the single-phase models over-predict methanol crossover. The modeling results also show that the porosity of the anode diffusion layer plays an important role in the DMFC performance. With low diffusion layer porosity, the produced carbon dioxide cannot be removed effectively from the catalyst layer, thus reducing the active catalyst area as well as blocking methanol from reaching the reaction zone. A similar effect exits in the cathode for the liquid water.  相似文献   

6.
A long-term durability test has been conducted for a direct methanol fuel cell (DMFC) using the commercial hydrocarbon membrane and Nafion ionomer bonded electrodes for 500 h. Membrane electrode assembly (MEA) made by a decal method has experienced a performance degradation about 34% after 500 h operation. Cross-sectional analysis of the MEA shows that the poor interfacial contact between the catalyst layers and membrane in the MEA has further deteriorated after the durability test. Therefore, the internal resistance of a cell measured by electrochemical impedance spectroscopy (EIS) has considerably increased. The delamination at the interfaces is mainly attributed to incompatibility between polymeric materials used in the MEA. Furthermore, X-ray diffraction (XRD) analysis reveals that the catalyst particles have grown; thereby decreasing the electrochemical surface area. Electron probe micro analysis (EPMA) shows a small amount of Ru crossover from anode to cathode; and its effect on the performance degradation has been analyzed.  相似文献   

7.
According to the conventional MEA test, methanol and water crossover are the main factors to determine performance of a passive DMFC. Thus, to ensure the high cell performance of a passive DMFC using high concentration methanol of 50–95 vol%, the MEA in this study introduces the barrier layer to limit the crossover of high concentration methanol, a hydrophobic layer to reduce water crossover, and a hydrophilic layer to enhance the water recovery from the cathode to the anode. The functional layers of the MEA have the effect of improving the performance of the passive DMFC by decreasing the methanol and water crossover. In spite of the operation with 95 vol% methanol, the MEA with multi-layer electrodes for high concentration methanol DMFCs shows a maximum power density of 35.1 mW cm−2 and maintains a high power density of 30 mW cm−2 (0.405 V) under constant current operation.  相似文献   

8.
It is desirable to operate a direct methanol fuel cell (DMFC) with neat methanol to maximize the specific energy of the DMFC system, and hence increasing its runtime. A way to achieve the neat-methanol operation is to passively transport the water produced at the cathode through the membrane to the anode to facilitate the methanol oxidation reaction (MOR). To achieve a performance of the MOR similar to that under the conventional diluted methanol operation, both the water transport rate and the local water concentration in the anode catalyst layer (CL) are required to be sufficiently high. In this work, a thin layer consisting of nanosized SiO2 particles and Nafion ionomer (referred to as a water retention layer hereafter) is coated onto each side of the membrane. Taking advantage of the hygroscopic nature of SiO2, the cathode water retention layer can help maintain the water produced from the cathode at a higher concentration level to enhance the water transport to the anode, while the anode retention layer can retain the water that is transported from the cathode. As a result, a higher water transport rate and a higher water concentration at the anode CL can be achieved. The formed membrane electrode assembly (MEA) with the added water retention layers is tested in a passive DMFC and the results show that this MEA design yields a much higher power density than the MEA without water retention layers does.  相似文献   

9.
《Journal of power sources》2002,112(2):367-375
A mathematical model for the anode of a direct methanol fuel cell (DMFC) is presented. This model considers the mass transport in the whole anode compartment and the proton exchange membrane (PEM), together with the kinetic and ohmic resistance effects through the catalyst layer. The influence of key parameters on methanol crossover and anode performance is investigated. Our results indicate that, at low current density and high methanol concentration, the methanol crossover poses a serious problem for a DMFC. The anodic overpotential and reaction-rate distributions throughout the catalyst layer are more sensitive to the protonic conductivity than to the diffusion coefficient of methanol. Increasing the protonic conductivity can effectively enhance the performance of a DMFC.  相似文献   

10.
Mass balance research in direct methanol fuel cells (DMFCs) provides a more practical method in characterizing the mass transport phenomena in a membrane electrode assembly (MEA). This method can be used to measure methanol utilization efficiency, water transport coefficient (WTC), and methanol to electricity conversion rate of a MEA in DMFCs. First, the vital design parameters of a MEA are recognized for achieving high methanol utilization efficiency with increased power density. In particular, the structural adjustment of anode diffusion layer by adding microporous layer (MPL) is a very effective way to decrease WTC with reduced methanol crossover due to the mass transfer limitation in the anode. On the other hand, the cathode MPL in the MEA design can contribute in decreasing methanol crossover. The change of structure of cathode diffusion layer is also found to be a very effective way in improving power density. In contrast, the WTC of DMFC MEAs remains virtually constant in the range of 3.4 and 3.6 irrespective of the change of the cathode GDL. The influence of operating condition on the methanol utilization efficiency, WTC, and methanol to electricity conversion rate is also presented and it is found that these mass balance properties are strongly affected by temperature, current density, methanol concentration, and the stoichiometry of fuel and air.  相似文献   

11.
This study presents the benefit to an operating direct methanol fuel cell (DMFC) by coating a micro-porous layer (MPL) on the surface of anode gas diffusion layer (GDL). Taking the membrane electrode assembly (MEA) with and without the anodic MPL structure into account, the performances of the two types of MEA are evaluated by measuring the polarization curves together with the specific power density at a constant current density. Regarding the cell performances, the comparisons between the average power performances of the two different MEAs at low and high current density, various methanol concentrations and air flow rates are carried out by using the electrochemical impedance spectroscopy (EIS) technique. In contrast to conventional half cell EIS measurements, both the anode and cathode impedance spectra are measured in real-time during the discharge regime of the DMFC. As comparing each anode and cathode EIS between the two different MEAs, the influences of the anodic MPL on the anode and cathode reactions are systematically discussed and analyzed. Furthermore, the results are used to infer complete and reasonable interpretations of the combined effects caused by the anodic MPL on the full cell impedance, which correspond with the practical cell performance.  相似文献   

12.
《Journal of power sources》2006,160(1):413-421
A three-dimensional, single-phase, multi-component mathematical model has been developed for a liquid-fed direct methanol fuel cell (DMFC). The traditional continuity, momentum, and species conservation equations are coupled with electrochemical kinetics in both the anode and cathode catalyst layer. At the anode side, the liquid phase is considered, and at the cathode side only the gas phase is considered. Methanol crossover due to both diffusion and electro-osmotic drag from the anode to the cathode is taken into consideration and the effect is incorporated into the model using a mixed-potential at the cathode. A finite-volume-based CFD technique is used to develop the in-house numerical code and the code is successfully used to simulate the fuel cell performance as well as the multi-component behavior in a DMFC. The modeling results of polarization curves compare well with our experimental data. Subsequently, the model is used to study the effects of methanol crossover, the effects of porosities of the diffusion layer and the catalyst layer, the effects of methanol flow rates, and the effects of the channel shoulder widths.  相似文献   

13.
This study reports a novel strategy by using polyaniline nanofibers (PANFs) to modify membrane-electrode assembly (MEA) for improving direct methanol fuel cell (DMFC) performance. First of all, a series of PANFs emeraldine salt was synthesized and characterized. Then, we investigated the effect of PANFs layout in MEA on DMFC performance. Three different placements to incorporate the as-synthesized PANFs in anodes include (1) placing a layer of PANFs between catalyst layer (CL) and proton exchange membrane (PEM), (2) mixing with catalyst slurry and coating onto gas diffusion layer (GDL), and (3) placing a layer of PANFs between CL and GDL. Polarization curves indicate that the third method is superior to the others and is adopted as the incorporation layout thereafter. Both methanol transport resistance and methanol crossover of the PANFs-modified MEA are studied further. The DMFC incorporated with H2SO4-doped PANFs obtained after the re-doping process with 2 mol L−1 H2SO4 performs a power density as high as 53 mW cm−2, about 20% higher than that of the pristine one without PANFs incorporation. However, an excessive doping level may result in a higher methanol transport resistance due to PANFs aggregation and thus deteriorate DMFC performance. This study provides a simple and effective way by placing a layer of PANFs between CL and GDL in anode to act as methanol transport regulator and improve DMFC performance consequently.  相似文献   

14.
Passive direct methanol fuel cells (DMFCs) are promising energy sources for portable electronic devices. Different from DMFCs with active fuel feeding systems, passive DMFCs with nearly stagnant fuel and air tend to bear comparatively less power densities. A steady state, one-dimensional, multi-component and thermal model is described and applied to simulate the operation of a passive direct methanol fuel cell. The model takes into consideration the thermal and mass transfer effects, along with the electrochemical reactions occurring in the passive DMFC. The model can be used to predict the methanol, oxygen and water concentration profiles in the anode, cathode and membrane as well as to estimate the methanol and water crossover and the temperature profile across the cell. Polarization curves are numerically simulated and successfully compared with experiments for different methanol feed concentrations. The model predicts with accuracy the influence of the methanol feed concentration on the cell performance and the correct trends of the current density and methanol feed concentration, on methanol and water crossover. The model is rapidly implemented and is therefore suitable for inclusion in real-time system level DMFC calculations. Due to its simplicity the model can be used to help seek for possibilities of optimizing the cell performance of a passive DMFC by studying impacts from variations of the design parameters such as membrane thickness, catalyst loading, diffusion layers type and thicknesses.  相似文献   

15.
A membrane electrode assembly (MEA) that is a combination of a catalyst-coated membrane (CCM) for the anode and a catalyst-coated substrate (CCS) for the cathode is studied under air-blower conditions for direct methanol fuel cells (DMFCs). Compared with MEAs prepared by only the CCS method, the performance of DMFC MEAs employing the combination method is significantly improved by 30% with less methanol crossover. This feature can be attributed to an enhanced electrode|membrane interface in the anode side and significantly higher catalyst efficiency. Furthermore, DMFC MEAs designed by the combination method retain high power density without any degradation, while the CCM-type cell shows a downward tendency in electrochemical performance under air-blower conditions. This may be due to MEAs with CCM have a much more difficult structure of catalytic active sites in the cathode to eliminate the water produced by electrochemical reaction. In addition, DMFCs produced via combination methods exhibit a lower water crossover flux than CCS alternatives, due to the comparatively dense structure of the CCM anode. Hence, DMFCs with a combination MEA structure demonstrate the feasibility of a small fuel cell system employing the low noise of a fan, instead of a noisy and large capacity air pump, for portable electronic devices.  相似文献   

16.
Models are a fundamental tool for the design process of fuel cells and fuel cell systems. In this work, a steady-state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC, is presented. The model output is the temperature profile through the cell and the water balance and methanol crossover between the anode and the cathode. The model predicts the correct trends for the influence of current density and methanol feed concentration on both methanol and water crossover. The model estimates the net water transfer coefficient through the membrane, α, a very important parameter to describe water management in the DMFC. Suitable operating ranges can be set up for different MEA structures maintaining the crossover of methanol and water within acceptable levels. The model is rapidly implemented and is therefore suitable for inclusion in real-time system level DMFC calculations.  相似文献   

17.
Use of highly concentrated methanol fuel is required for direct methanol fuel cells (DMFCs) to compete with the energy density of Li-ion batteries. Because one mole of H2O is needed to oxidize one mole of methanol (CH3OH) in the anode, low water crossover to the cathode or even water back flow from the cathode into the anode is a prerequisite for using highly concentrated methanol. It has previously been demonstrated that low or negative water crossover can be realized by the incorporation of a low-α membrane electrode assembly (MEA), which is essentially an MEA designed for optimal water management, using, e.g. hydrophobic anode and cathode microporous layers (aMPL and cMPL). In this paper we extend the low-α MEA concept to include an anode transport barrier (aTB) between the backing layer and hydrophobic aMPL. The main role of the aTB is to act as a barrier to CH3OH and H2O diffusion between a water-rich anode catalyst layer (aCL) and a methanol-rich fuel feed. The primary role of the hydrophobic aMPL in this MEA is to facilitate a low (or negative) water crossover to the cathode. Using a previously developed 1D, two-phase DMFC model, we show that this novel design yields a cell with low methanol crossover (i.e. high fuel efficiency, ∼80%, at a typical operating current density of ∼80-90% of the cell limiting current density), while directly feeding high concentration methanol fuel into the anode. The physics of how the aTB and aMPL work together to accomplish this is fully elucidated. We further show that a thicker, more hydrophilic, more permeable aTB, and thicker, more hydrophobic, and less permeable aMPL are most effective in accomplishing low CH3OH and H2O crossover.  相似文献   

18.
A one-dimensional, steady-state, two-phase direct methanol fuel cell (DMFC) model is developed to precisely investigate complex physiochemical phenomena inside DMFCs. In this model, two-phase species transport through the porous components of a DMFC is formulated based on Maxwell–Stefan multi-component diffusion equations, while capillary-induced liquid flow in the porous media is described by Darcy's equation. In addition, the model fully accounts for water and methanol crossover through the membrane, which is driven by the effects of electro-osmotic drag, diffusion, and the hydraulic pressure gradient. The developed model is validated against readily available experimental data in the literature. Then, a parametric study is carried out to investigate the effects of the operating temperature, methanol feed concentration, and properties of the backing layer. The results of the numerical simulation clarify the detailed influence of these key designs and operating parameters on the methanol crossover rate as well as cell performance and efficiency. The results emphasize that the material properties and design of the anode backing layer play a critical role in the use of highly concentrated methanol fuel in DMFCs. The present study forms a theoretical background for optimizing the DMFC's components and operating conditions.  相似文献   

19.
A design of experiments (DOEs) coupled with a mathematical model was used to quantify the factors affecting methanol crossover in a direct methanol fuel cell (DMFC). The design of experiments examined the effects of temperature, cathode stoichiometry, anode methanol flow rate, clamping force, anode catalyst loading, cathode catalyst loading (CCL), and membrane thickness as a function of current and it also considered the interaction between any two of these factors. The analysis showed that significant factors affecting methanol crossover were temperature, anode catalyst layer thickness, and methanol concentration. The analysis also showed how these variables influence the total methanol crossover in different ways due to the effects on diffusion of methanol through the membrane, electroosmotic drag, and reaction rate of methanol at the anode and cathode. For example, as expected analysis showed that diffusion was significantly affected by the anode and cathode interfacial concentration, by the thickness of the anode catalyst layer and membrane, and by the diffusion coefficient in the membrane. Less obvious was the decrease in methanol crossover at low cathode flow rates were due to the formation of a methanol film at the membrane/cathode catalyst layer interface. The relative proportions of diffusion and electroosmotic drag in the membrane changed significantly with the cell current of the cell.  相似文献   

20.
The water required for the methanol oxidation reaction in a direct methanol fuel cell (DMFC) operating with neat methanol can be supplied by diffusion from the cathode to the anode through the membrane. In this work, we present a method that allows the water transport rate through the membrane to be in-situ determined. With this method, the effects of the design parameters of the membrane electrode assembly (MEA) and operating conditions on the water transport through the membrane are investigated. The experimental data show that the water flux by diffusion from the cathode to the anode is higher than the opposite flow flux of water due to electro-osmotic drag (EOD) at a given current density, resulting in a net water transport from the cathode to the anode. The results also show that thinning the anode gas diffusion layer (GDL) and the membrane as well as thickening the cathode GDL can enhance the water transport flux from the cathode to the anode. However, a too thin anode GDL or a too thick cathode GDL will lower the cell performance due to the increases in the water concentration loss at the anode catalyst layer (CL) and the oxygen concentration loss at the cathode CL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号