首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
4 V-class olivine C-LiMn1−xFexPO4 (x = 0 and 0.15) are synthesized by ultrasonic pyrolysis followed by ball milling with AB carbon to evaluate the doping effect of iron. The C-LiMn0.85Fe0.15PO4 shows excellent rate capability having discharge capacity of 150 mAh g−1 at 0.5C-rate and 121 mAh g−1 at 2C-rate. The capacity retention of the C-LiMn0.85Fe0.15PO4 is 91% after 50 cycles at 55 °C whereas C-LiMnPO4 is limited to 87%. The improved electrochemical performance of the C-LiMn0.85Fe0.15PO4 electrode is attributed to the enhanced electrical conductivity caused by tighter binding on the carbon particles with the LiMn0.85Fe0.15PO4 primary particles as well as by the surface coating of carbon on the primary particles.  相似文献   

2.
Structural, electrical and electrochemical properties of Mn-substituted phospho-olivines LiFe1−yMnyPO4 were investigated and compared to those of LiFePO4. Rietvield refined XRD patterns taken in the course of delithiation process showed apparent difference between phase compositions of these cathode materials upon lithium extraction. Contrary to the LiFePO4 and LiMnPO4 compositions for which a two-phase mechanism of electrochemical lithium extraction/insertion is observed, in case of Mn-substituted LiFe1−yMnyPO4 samples a single-phase mechanism of deintercalation was observed in the studied range of lithium concentration. Electrochemical characterization of the cathode materials were performed in Li/Li+/LixFe1−yMnyPO4-type cells for y = 0.0, 0.25, 0.55, 0.75 and 1.0 compositions. Voltammery studies showed low reversibility of the lithium extraction process in the high-voltage “manganese” range, while in the “iron” range the reversibility of lithium extraction is high. Impedance measurements of the LiFe1−yMnyPO4 cathode materials, which enabled separation of the ionic and electronic components of their entire electrical conductivity, showed distinct influence of Mn content on the electronic part of conductivity. EIS measurements performed at different states of cell charge revealed that the charge-transfer impedance in LixFe1−yMnyPO4 is much lower than that of LixFePO4.  相似文献   

3.
Li3V(2 − 2x/3)Mgx(PO4)3/C (x = 0, 0.15, 0.30, 0.45) composites have been synthesized by the sol-gel assisted solid state method, using adipic acid C6H10O4 (hexanedioic acid) as carbon source. The particle size of the composites is ∼1 μm. During the pyrolysis process, Li3V(2 − 2x/3)Mgx(PO4)3/C network structure is formed. The effect of Mg2+ doped on the electrochemical properties of Li3V2(PO4)3/C positive materials has been studied. Li3V1.8Mg0.30(PO4)3/C as the cathode materials of Li-ion batteries, the retention rate of discharge capacity is 91.4% (1 C) after 100 cycles. Compared with Li3V2(PO4)3/C, Li3V(2 − 2x/3)Mgx(PO4)3/C composites have shown enhanced capacity and retention rate capability. The long-term cycles and ex situ XRD tests disclose that Li3V1.8Mg0.30(PO4)3 exhibits higher structural stability than the undoped system.  相似文献   

4.
The high redox potential of LiMnPO4, ∼4.0 vs. (Li+/Li), and its high theoretical capacity of 170 mAh g−1 makes it a promising candidate to replace LiCoO2 as the cathode in Li-ion batteries. However, it has attracted little attention because of its severe kinetic problems during cycling. Introducing iron into crystalline LiMnPO4 generates a solid solution of LiFexMn1−xPO4 and increases kinetics; hence, there is much interest in determining the Fe-to-Mn ratio that will optimize electrochemical performance. To this end, we synthesized a series of nanoporous LiFexMn1−xPO4 compounds (with x = 0, 0.05, 0.1, 0.15, and 0.2), using an inexpensive solid-state reaction. The electrodes were characterized using X-ray diffraction and energy-dispersive spectroscopy to examine their crystal structure and elemental distribution. Scanning-, tunneling-, and transmission-electron microscopy (viz., SEM, STEM, and TEM) were employed to characterize the micromorphology of these materials; the carbon content was analyzed by thermogravimetric analyses (TGAs). We demonstrate that the electrochemical performance of LiFexMn1−xPO4 rises continuously with increasing iron content. In situ synchrotron studies during cycling revealed a reversible structural change when lithium is inserted and extracted from the crystal structure. Further, introducing 20% iron (e.g., LiFe0.2Mn0.8PO4) resulted in a promising capacity (138 mAh g−1 at C/10), comparable to that previously reported for nano-LiMnPO4.  相似文献   

5.
A cylindrical hybrid supercapacitor was fabricated using Li4−xNaxTi5O12 as an anode and activated carbon as a cathode. Li4−xNaxTi5O12 (0 ≤ x ≤ 0.6) powder was successfully crystallized, and the grain size of Li4−xNaxTi5O12 decreased with increasing Na content. This indicated that Na can enhance the electrochemical performance due to smaller grain size and ionic conductivity. However, excessive Na content causes a distortion of the original Li4Ti5O12 structure during cycling. The hybrid supercapacitor with the Li3.7Na0.3Ti5O12 anode shows similar electrochemical performance to Li3.4Na0.6Ti5O12, and approximately 92% of the maximum cycle performance is retained, even after 5000 cycles at 2.5 Ag−1.  相似文献   

6.
Li1+xFePO4 (0 ≤ x ≤ 3) as anode material for lithium ion batteries has been studied using ab initio calculations. Results show that large amount of lithium ions can be intercalated into LiFePO4 host. The structure changes continuously when the first two Moles of lithium ions (x ≤ 2) are intercalated into the LiFePO4 host, accompanied by large volume expansion (37.4% and 25.4% for the first and second Mole). The final product of Li3FePO4 possesses a stable chained structure, which is favorable for storing even more lithium. In the same time, lithium ion diffuses in a three-dimension pathway within the chained structure. The unit cell volume increases only by 4.9% from Li3FePO4 to Li4FePO4, and the chained structure keeps unchanged.  相似文献   

7.
LiFePO4, olivine-type LiFe0.9Mn0.1PO4/Fe2P composite was synthesized by mechanical alloying of carbon (acetylene back), M2O3 (M = Fe, Mn) and LiOH·H2O for 2 h followed by a short-time firing at 900 °C for only 30 min. By varying the carbon excess different amounts of Fe2P second phase was achieved. The short firing time prevented grain growth, improving the high-rate charge/discharge capacity. The electrochemical performance was tested at various C/x-rate. The discharge capacity at 1C rate was increased up to 120 mAh g−1 for the LiFe0.9Mn0.1PO4/Fe2P composite, while that of the unsubstituted LiFePO4/Fe2P and LiFePO4 showed only 110 and 60 mAh g−1, respectively. Electronic conductivity and ionic diffusion constant were measured. The LiFe0.9Mn0.1PO4/Fe2P composite showed higher conductivity and the highest diffusion coefficient (3.90 × 10−14 cm2 s−1). Thus the improvement of the electrochemical performance can be attributed to (1) higher electronic conductivity by the formation of conductive Fe2P together with (2) an increase of Li+ ion mobility obtained by the substitution of Mn2+ for Fe2+.  相似文献   

8.
In order to search for cathode materials with better performance, Li3(V1−xMgx)2(PO4)3 (0, 0.04, 0.07, 0.10 and 0.13) is prepared via a carbothermal reduction (CTR) process with LiOH·H2O, V2O5, Mg(CH3COO)2·4H2O, NH4H2PO4, and sucrose as raw materials and investigated by X-ray diffraction (XRD), scanning electron microscopic (SEM) and electrochemical impedance spectrum (EIS). XRD shows that Li3(V1−xMgx)2(PO4)3 (x = 0.04, 0.07, 0.10 and 0.13) has the same monoclinic structure as undoped Li3V2(PO4)3 while the particle size of Li3(V1−xMgx)2(PO4)3 is smaller than that of Li3V2(PO4)3 according to SEM images. EIS reveals that the charge transfer resistance of as-prepared materials is reduced and its reversibility is enhanced proved by the cyclic votammograms. The Mg2+-doped Li3V2(PO4)3 has a better high rate discharge performance. At a discharge rate of 20 C, the discharge capacity of Li3(V0.9Mg0.1)2(PO4)3 is 107 mAh g−1 and the capacity retention is 98% after 80 cycles. Li3(V0.9Mg0.1)2(PO4)3//graphite full cells (085580-type) have good discharge performance and the modified cathode material has very good compatibility with graphite.  相似文献   

9.
A series of LiFe1−xMnxPO4/C materials with high Mn content (0.7 ≤ x ≤ 0.9) are synthesized by solid state reaction. The samples have mesoporous structure with an average pore size of 25 nm, particle size around 200-300 nm, crystalline size around 30 nm and specific areas around 50 m2 g−1. Their electrochemical performances are studied and the reversible capacity and rate performance decrease with the increase of Mn content. The redox potential of the Fe2+/Fe3+ and Mn2+/Mn3+ redox couple also shift accordingly. The overpotential value of the Mn2+/Mn3+ redox couple (80 mV) is close to that of the Fe2+/Fe3+ couple (60 mV) in all three compositions and shows a maximum (∼300 mV) in the regions of voltage transition.  相似文献   

10.
A simple method has been employed to prepare pillared layered Li1−2xCaxCoO2 cathode materials by cationic exchange under hydrothermal conditions. The synthesized materials were characterized by means of X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), field emission scanning electron microscope (FE-SEM) and galvanostatic charge–discharge cycling. The XRD data of the products show that they are single phases and retain the layered α-NaFeO2 type structure. The FE-SEM images of the materials prepared by hydrothermal method show uniform small particles, and the particle size of the materials is about 200 nm. The initial discharge specific capacities of layered LiCoO2 and pillared layered Li0.946Ca0.027CoO2 cathode materials calcined at 800 °C for 5 h within the potential range of 3.0–4.3 V (vs. Li+/Li) are 144.6 and 142.3 mAh g−1, respectively, and both materials retain good charge–discharge cycling performance. However, with increasing upper cutoff voltage, the pillar effect of Ca2+ in Li1−2xCaxCoO2 becomes more significant. The pillared layered Li0.946Ca0.027CoO2 has a higher capacity with an initial discharge specific capacity of 177.9 and 215.8 mAh g−1 within the potential range of 3.0–4.5 and 4.7 V (vs. Li+/Li), respectively, and retains good charge–discharge cycling performance.  相似文献   

11.
We investigated the effect of CO2 on layered Li1+zNi1−xyCoxMyO2 (M = Al, Mn) cathode materials for lithium ion batteries which were prepared by solid-state reactions. Li1+zNi(1−x)/2CoxMn(1−x)/2O2 (Ni/Mn mole ratio = 1) singularly exhibited high storage stability. On the other hand, Li1+zNi0.80Co0.15Al0.05O2 samples were very unstable due to CO2 absorption. XPS and XRD measurements showed the reduction of Ni3+ to Ni2+ and the formation of Li2CO3 for Li1+zNi0.80Co0.15Al0.05O2 samples after CO2 exposure. SEM images also indicated that the surfaces of CO2-treated samples were covered with passivation films, which may contain Li2CO3. The relationship between CO2-exposure time and CO32− content suggests that there are two steps in the carbonation reactions; the first step occurs with the excess Li components, Li2O for example, and the second with LiNi0.80Co0.15Al0.05O2 itself. It is well consistent with the fact that the discharge capacity was not decreased and the capacity retention was improved until the excess lithium is consumed and then fast deterioration occurred.  相似文献   

12.
Two types of carbon source and precursor mixing pellets were employed simultaneously to prepare the LiFePO4/C composite materials: Type I using the LiFePO4 precursor with 20 wt.% polystyrene (PS) as a primary carbon source, and Type II using the LiFePO4 precursor with 50 wt.% malonic acid as a secondary carbon vapor source. During final sintering, a Type I pellet was placed down-stream and Type II precursor pellet(s) was(were) placed upstream next to a Type I precursor pellet in a quartz-tube furnace. The carbon-coated product of the sintered Type I precursor pellet was obtained by using both PS and malonic acid as carbon sources. When two Type II pellets were used as a carbon vapor source (defined as Product-2), a more uniform film between 4 and 8 nm was formed, as shown in the TEM images. In the absence of a secondary carbon source (defined as Product-0), the discharge capacity of Product-0 was 137 mAh g−1 with 100 cycles at a 0.2C-rate, but Product-2 demonstrated a high capacity of 151 mAh g−1 with 400 cycles. Our results indicate that electrochemical properties of LiFePO4 are correlated to the amount of carbon and its coating thickness and uniformity.  相似文献   

13.
Li2−xVTiO4/C sample with a disordered rock salt structure was successfully prepared by annealing at a temperature of 850 °C. The electrochemical oxidation in the first cycle occurs at voltages above 4 V vs. metallic lithium, while the shapes of the electrochemical curves in consequent reduction-oxidation processes show a monotonous change of the potential between the selected cut-off voltages. A linear combination fit of individual XANES spectra was used for the determination of the oxidation states of as prepared sample and intermediate states during oxidation and reduction. In the as-prepared sample, vanadium was found to be in the average oxidation state of V3.5+ and was additionally oxidized to V3.8+ by the electrochemical charging. During the discharge process, the vanadium oxidation state was reduced to V3.0+. In situ X-ray diffraction patterns and EXAFS analysis suggest good structural stability during oxidation and reduction, which is also reflected in the cycling stability if batteries were cycled in the voltage window between 2.0 V and 4.4 V. Extension of the lower cut-off voltage to 1.0 V doubles the capacity retention with the improved capacity stability if compared with several high capacity vanadium based materials.  相似文献   

14.
Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 layered materials were synthesized by the co-precipitation method with different Li/M molar ratios (M = Ni + Mn + Co). Elemental titration evaluated by inductively coupled plasma spectrometry (ICP), structural properties studied by X-ray diffraction (XRD), Rietveld analysis of XRD data, scanning electron microscopy (SEM) and magnetic measurements carried out by superconducting quantum interference devices (SQUID) showed the well-defined α-NaFeO2 structure with cationic distribution close to the nominal formula. The Li/Ni cation mixing on the 3b Wyckoff site of the interlayer space was consistent with the structural model [Li1−yNiy]3b[Lix+yNi(1−x)/3−yMn(1−x)/3Co(1−x)/3]3aO2 (x = 0.02, 0.04) and was very small. Both Rietveld refinements and magnetic measurements revealed a concentration of Ni2+-3b ions lower than 2%; moreover, for the optimized sample synthesized at Li/M = 1.10, only 1.43% of nickel ions were located into the Li sublattice. Electrochemical properties were investigated by galvanostatic charge-discharge cycling. Data obtained with Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 reflected the high degree of sample optimization. An initial discharge capacity of 150 mAh g−1 was delivered at 1 C-rate in the cut-off voltage of 3.0-4.3 V. More than 95% of its initial capacity was retained after 30 cycles at 1 C-rate. Finally, it is demonstrated that a cation mixing below 2% is considered as the threshold for which the electrochemical performance does not change for Li1+x(Ni1/3Mn1/3Co1/3)1−xO2.  相似文献   

15.
The effect of Bi surface treatment on LiNi0.5Mn1.5−xTixO4 was examined. As a result, Bi surface film around 20 nm thick was confirmed to be fabricated on the surface of 5 V spinel LiNi0.5Mn1.5−xTixO4 by transmission electron microscopy (TEM) and energy dispersion X-ray spectrometer (EDX) analysis. The Bi compound was confirmed to be Bi2O3 by X-ray diffraction analysis. Cycle behavior was also found to be improved by Bi treatment. A retention capacity of up to around 85% was achieved after 500 cycles at 20 °C, while a retention capacity as high as 70% was obtained after 500 cycles, even at 45 °C. Storage performance was also improved with Bi treatment. Recovery capacity of more than 90% was obtained with Bi treatment after storage for 1 week at 60 °C. The increased resistance in storage was also suppressed with Bi treatment, which would be due to the suppression of electrolyte decomposition by the Bi coating film. It was found that Bi treatment had the effect of decreasing the dissolution of Mn, Ni and Ti of the elements of the cathode active material, due to inductively coupled plasma (ICP) analysis. Based on these results, the Bi surface coating was found to have a remarkable effect on the improvement of the cells with 5 V spinel.  相似文献   

16.
A (Ni1/3Co1/3Mn1/3)CO3 precursor with an uniform, spherical morphology was prepared by coprecipitation using a continuously stirred tank reactor method. The as-prepared spherical (Ni1/3Co1/3Mn1/3)CO3 precursor served to produce dense, spherical Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 (0 ≤ x ≤ 0.15) cathode materials. These Li-rich cathodes were also prepared by a second synthesis route that involved the use of an M3O4 (M = Ni1/3Co1/3Mn1/3) spinel compound, itself obtained from the carbonate (Ni1/3Co1/3Mn1/3)CO3 precursor. In both cases, the final Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 products were highly uniform, having a narrow particle size distribution (10-μm average particle size) as a result of the homogeneity and spherical morphology of the starting mixed-metal carbonate precursor. The rate capability of the Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 electrode materials, which was significantly improved with increased lithium content, was found to be better in the case of the denser materials made from the spinel precursor compound. This result suggests that spherical morphology, high density, and increased lithium content were key factors in enabling the high rate capabilities, and hence the power performances, of the Li-rich Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cathodes.  相似文献   

17.
We demonstrate, for the first time, a considerable electrochemical activity of two members of lithium transition element titanates: Li2FeTiO4 and Li2MnTiO4. Both materials consist of 10–20 nm particles embedded in a conductive carbon coating. We show that not the coating but the small particle size is decisive for materials’ activity. Li2FeTiO4 shows a stable reversible capacity of up to 123 mA hg−1 at C/20 and 60 °C which is 83% of the theoretical value for exchange of 1 electron (148 mA hg−1). Li2MnTiO4 could only be prepared in a nanosized form that contained about 30% of impurities. The capacity of the whole material (including impurities) is comparable to that of Li2FeTiO4 but the cycling stability is much poorer. In contrast to the Fe and Mn analogues, the third member of the titanate family, Li2NiTiO4, shows a good electrochemistry even when the particle size is much larger (about 100 nm). During initial cycles at C/10 and 60 °C, exchange of more than 1 electron per compound formula has been observed. The cycling stability at high temperatures, however, is poor.  相似文献   

18.
LiFePO4/carbon composite electrode was prepared and applied to the dry polymer electrolyte. Enhanced low-temperature performance of LiFePO4 was achieved by modifying the interface between LiFePO4 and polymer electrolyte. The molecular weight of the polymer and the salt concentration as the Li/O ratio were optimized at 3 × 105 and 1/10, respectively. Impedance analysis revealed that a small resistive component occurred in the frequency range of the charge transfer process. The reversible capacity of the laminate cell was 140 mAh g−1 (C/20) and 110 mAh g−1 (C/2) at 40 °C, which is comparable to the performance in the liquid electrolyte system.  相似文献   

19.
A series of BiWxV1−xO4+x/2 films were coated on fluorine-doped tin oxide (FTO) glass by a polymer-assisted method and examined as photoelectrodes for photoelectrochemical measurements under Xe lamp light irradiation in a 0.5 M Na2SO4 solution. The compositions, structural, optical and morphologic properties of the films were characterized by XPS, XRD, UV–vis and SEM. The results showed the successfully synthesized films and their photoelectrochemical activities, revealing that the amount of tungsten had an important effect on the photoelectrochemical activities of BiWxV1−xO4+x/2 films and the highest incident photon to current conversion efficiency (IPCE) was obtained when x equaled 0.1.  相似文献   

20.
In order to develop safe lithium-ion batteries using Ni-based cathode active materials, such as LiNixMn(1−x)/2Co(1−x)/2O2, thermal stability is one of the most important requirements. We used XRD and TDS-MS in the first step of our study to elucidate the thermal stability and to improve it under anomalous high temperature conditions. We investigated the relationship between the thermal stability and cathode composition, especially for that of the nickel and lithium content. The XRD indicated that the crystal structure of electrochemically delithiated materials changed from a layered into a spinel structure followed by a rock-salt structure as the temperature rose. The TDS-MS indicated that these changes coincided with the release of oxygen from the cathode materials. We found that decreasing the lithium content and increasing the nickel content made the temperature of the crystal structure change and oxygen release lower, and thus, influenced the cathode composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号