首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a series of nanocomposite polymer electrolytes (CPEs), PAN/LiClO4/SAP, with high conductivity are prepared based on polyacrylonitrile (PAN), LiClO4 and low content of the silica aerogel powder (SAP) prepared by the sol-gel method with ionic liquid (IL) as the template. The effect of addition of SAP on the properties of the CPEs is investigated by FTIR, AC impedance, linear sweep voltagrams and cyclic voltammetry measurements as well as the charge-discharge performance. It is found that the ionic conductivity of the CPE is significantly improved by addition of SAP. The maximum ambient ionic conductivity of CPEs is about 12.5 times higher than that without addition of SAP. The results of the voltammetry measurements of CPE-3, which contained 3 wt% of SAP, show that the anodic and cathodic peaks are well maintained after 100 cycles, showing excellent electrochemical stability and cyclability over the potential range between 0 V and 4 V vs. Li/Li+. Besides, the room temperature discharge capacity measured at 0.5C for the coin cell based on CPE-3 is 120 mAh g−1 and the capacity is retained after 20 cycles discharge, indicating the potential for practical use. This is perhaps the first report of the room temperature charge-discharge performance on the solid composite polymer electrolyte to the best of our knowledge.  相似文献   

2.
《Journal of power sources》2006,163(1):229-233
Solid polymer electrolytes composed of poly(ethylene oxide)(PEO), poly(oligo[oxyethylene]oxyterephthaloyl) and lithium perchlorate have been prepared and characterized. Addition of poly(oligo[oxyethylene]oxyterephthaloyl) to PEO/LiClO4 reduced the degree of crystallinity and improved the ambient temperature ionic conductivity. The blend polymer electrolyte containing 40 wt.% of poly(oligo[oxyethylene]oxyterephthaloyl) showed an ionic conductivity of 2.0 × 10−5 S cm−1 at room temperature and a sufficient electrochemical stability to allow application in the lithium batteries. By using the blend polymer electrolytes, the lithium metal polymer cells composed of lithium anode and LiCoO2 cathode were assembled and their cycling performances were evaluated at 40 °C.  相似文献   

3.
《Journal of power sources》2006,156(2):581-588
ZSM-5 molecular sieves, usually known as shape-selective catalyst in a great deal of catalysis fields, due to its special pore size and two-dimensional interconnect channels. In this work, a novel PEO-based composite polymer electrolyte by using ZSM-5 as the filler has been developed. The interactions between ZSM-5 and PEO matrix are studied by DSC and SEM techniques. The effects of ZSM-5 on the electrochemical properties of the PEO-based electrolyte, such as ionic conductivity, lithium ion transference number, and interfacial stability with lithium electrode are studied by electrochemical impedance spectroscopy and steady-state current method. The experiment results show that ZSM-5 can enhance the ionic conductivity and increase the lithium ion transference number of PEO-based electrolyte more effectively comparing with traditional ceramic fillers such as SiO2 and Al2O3, resulting from its special framework topology structure. The excellent performances such as high ionic conductivity, good compatibility with lithium metal electrode, and broad electrochemical stability window suggesting that PEO–LiClO4/ZSM-5 composite polymer electrolyte can be used as candidate electrolyte materials for lithium polymer batteries.  相似文献   

4.
The electrochemical properties of solvent-free, quaternary polymer electrolytes based on a novel polymeric ionic liquid (PIL) as polymer host and incorporating 1g13TFSI ionic liquid, LiTFSI salt and nano-scale silica are reported. The PIL-LiTFSI-1g13TFSI-SiO2 electrolyte membranes are found to be chemically stable even at 80 °C in contact with lithium anode and thermally stable up to 320 °C. Particularly, the quaternary polymer electrolytes exhibit high lithium ion conductivity at high temperature, wide electrochemical stability window, time-stable interfacial resistance values and good lithium stripping/plating performance. Batteries assembled with the quaternary polymer electrolyte at 80 °C are capable to deliver 140 mAh g−1 at 0.1C rates with very good capacity retention.  相似文献   

5.
Apart from PEO based solid polymer electrolytes, tailor-made gel polymer electrolytes based on blend/composite membranes of poly(vinylidene fluoride-co-hexafluoropropylene) and polyacrylonitrile are prepared by electrospinning using 14 wt% polymer solution in dimethylformamide. The membranes show uniform morphology with an average fiber diameter of 320-490 nm, high porosity and electrolyte uptake. Polymer electrolytes are prepared by soaking the electrospun membranes in 1 M lithium hexafluorophosphate in ethylene carbonate/dimethyl carbonate. Temperature dependent ionic conductivity and their electrochemical performance are studied. The blend/composite polymer electrolytes show good ionic conductivity in the range of 10−3 S cm−1 at ambient temperature and good electrochemical performance. All the Polymer electrolytes show an anodic stability >4.6 V with stable interfacial resistance with storage time. The prototype cell shows good charge-discharge properties and stable cycle performance with comparable capacity fade compared to liquid electrolyte under the test conditions.  相似文献   

6.
《Journal of power sources》2005,141(1):188-192
A micro-porous polymer electrolyte based on PVA was obtained from PVA–PVC based polymer blend film by a novel preferential polymer dissolution technique. The ionic conductivity of micro-porous polymer electrolyte increases with increase in the removal of PVC content. Finally, the effect of variation of lithium salt concentration is studied for micro-porous polymer electrolyte of high ionic conductivity composition. The ionic conductivity of the micro-porous polymer electrolyte is measured in the temperature range of 301–351 K. It is observed that a 2 M LiClO4 solution of micro-porous polymer electrolyte has high ionic conductivity of 1.5055 × 10−3 S cm−1 at ambient temperature. Complexation and surface morphology of the micro-porous polymer electrolytes are studied by X-ray diffraction and SEM analysis. TG/DTA analysis informs that the micro-porous polymer electrolyte is thermally stable upto 277.9 °C. Chronoamperommetry and linear sweep voltammetry studies were made to find out lithium transference number and stability of micro-porous polymer electrolyte membrane, respectively. Cyclic voltammetry study was performed for carbon/micro-porous polymer electrolyte/LiMn2O4 cell to reveal the compatibility and electrochemical stability between electrode materials.  相似文献   

7.
The electrochemical properties of a solid hybrid polymer electrolyte for lithium batteries based upon tri-ethyl sulfonium bis(trifluorosulfonyl) imide (S2TFSI), lithium TFSI, and poly(ethylene oxide) (PEO) is presented. We have synthesized homogenous freestanding films that possess low temperature ionic conductivity and wide electrochemical stability. The hybrid electrolyte has demonstrated ionic conductivity of 0.117 mS cm−1 at 0 °C, and 1.20 mS cm−1 at 25 °C. At slightly elevated temperature ionic conductivity is on the order of 10 mS cm−1. The hybrid electrolyte has demonstrated reversible stability against metallic lithium at the anodic interface and >4.5 V vs. Li/Li+ at the cathodic interface.  相似文献   

8.
Composite membranes of poly(vinylidene fluoride-co-hexafluoropropylene) {P(VdF-HFP)} and different composition of silica have been prepared by electrospinning polymer solution containing in situ generated silica. These membranes are made up of fibers of 1–2 μm diameters. These fibers are stacked in layers to produce fully interconnected pores that results in high porosity. Polymer electrolytes were prepared by immobilizing 1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) in the membranes. The composite membranes exhibit a high electrolyte uptake of 550–600%. The optimum electrochemical properties have been observed for the polymer electrolyte containing 6% in situ silica to show ionic conductivity of 8.06 mS cm−1 at 20 °C, electrolyte retention ratio of 0.85, anodic stability up to 4.6 V versus Li/Li+, and a good compatibility with lithium metal resulting in low interfacial resistance. A first cycle specific capacity of 170 mAh g−1 was obtained when the polymer electrolyte was evaluated in a Li/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 °C, corresponding to 100% utilization of the cathode material. The properties of composite membrane prepared with in situ silica were observed to be comparatively better than the one prepared by direct addition of silica.  相似文献   

9.
Nonwoven films of composites of thermoplastic polyurethane (TPU) with different proportion of poly(vinylidene fluoride) (PVdF) (80, 50 and 20%, w/w) are prepared by electrospinning 9 wt% polymer solution at room temperature. Then the gel polymer electrolytes (GPEs) are prepared by soaking the electrospun TPU-PVdF blending membranes in 1 M LiClO4/ethylene carbonate (EC)/propylene carbonate (PC) for 1 h. The gel polymer electrolyte (GPE) shows a maximum ionic conductivity of 3.2 × 10−3 S cm−1 at room temperature and electrochemical stability up to 5.0 V versus Li+/Li for the 50:50 blend ratio of TPU:PVdF system. At the first cycle, it shows a first charge-discharge capacity of 168.9 mAh g−1 when the gel polymer electrolyte (GPE) is evaluated in a Li/PE/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 °C. TPU-PVdF (50:50, w/w) based gel polymer electrolyte is observed much more suitable than the composite films with other ratios for high-performance lithium rechargeable batteries.  相似文献   

10.
《Journal of power sources》2001,94(2):201-205
The interface resistance between a lithium metal electrode and a polymer electrolyte has been measured for composite polymer electrolytes using various ceramic fillers with poly(ethylene oxide) (PEO) and lithium salts (LiX). The interface resistance depended on the properties of added fillers and lithium salts. The PEO with LiClO4 electrolyte contacted with lithium metal showed the high interfacial resistance of 1000 Ω cm2 at 70°C for 25 days. In contrast, the interface resistance between lithium metal and PEO with Li(CF3SO2)2N was as low as 67 Ω cm2 after contacting at 80°C for 30 days. The interface stability and the lithium ion conductivity were improved by addition of a small amount of ferroelectric BaTiO3 as the filler into the PEO–LiX electrolyte.  相似文献   

11.
Blends of PVdF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs.In this work we prepared and characterized PVdF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide ionic liquid (PYRA12O1TFSI). The membranes were filled in with two different types of silica: (i) mesoporous SiO2 (SBA-15) and (ii) a commercial nano-size one (HiSil™ T700). The ionic conductivity and the electrochemical properties of the gel electrolytes were studied in terms of the nature of the filler.The thermal and the transport properties of the composite membranes are similar. In particular, room temperature ionic conductivities higher than 0.25 mS cm−1 are easily obtained at defined filler contents. However, the mesoporous filler guarantees higher lithium transference numbers, a more stable electrochemical interface and better cycling performances. Contrary to the HiSil™-based membrane, the Li/LiFePO4 cells with PVdF-HFP/PYRA12O1TFSI-LiTFSI films containing 10 wt% of SBA-15 show good charge/discharge capacity, columbic efficiency close to unity, and low capacity losses at medium C-rates during 180 cycles.  相似文献   

12.
Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1-n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm−1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for LixCoO2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.  相似文献   

13.
Ion conducting polymer electrolyte films based on poly(ethylene oxide) (PEO) complexed with a glass (15Na2O–15NaF–70B2O3) are prepared by a solution—cast technique. The complexation of the glass with PEO is confirmed by X-ray diffraction analysis. DC conductivity in the temperature range 303–373 K and transference number measurements are performed in order to investigate the charge transport in the polymer electrolyte system. The conductivity of the (PEO+glass) electrolyte is about 104 times larger than that of pure PEO at room temperature. The transference number data show that the charge transport in this polymer electrolyte system is predominantly due to ions. Using these polymer electrolytes, solid-state electrochemical cells are fabricated. Various parameters associated with these cells are evaluated and compared with those of other reported cells.  相似文献   

14.
Solid polymer electrolytes provide high safety and good electrochemical stability in solid-state lithium batteries (SSLBs) compared with conventional liquid electrolytes. In this work, a novel solid polymer composite electrolyte based on poly (ethylene oxide) (PEO) filled with rod-like Zn2(OH)BO3 particles was prepared by a grinding process followed with a heating treatment process and a cold pressing process. The effect of the incorporation amount of rod-like Zn2(OH)BO3 particles on the ionic conductivity was investigated systemically. It is found that 10 mol% of rod-like Zn2(OH)BO3 particles addition resulted in a highest ionic conductivity of 2.78 × 10−5 at 30 °C and the improved ionic conductivity was considered to be caused by the reducing of PEO crystallinity and the increasing of Li ion migrating pathway on the interface between the Zn2(OH)BO3 and PEO. In addition, the optimum composite electrolyte exhibited a high electrochemical stability window of 4.51 V (vs. Li/Li+), good lithium stability and excellent thermal stability.  相似文献   

15.
In this paper the application of completely new generation imidazole-derived salts in a model polymer electrolyte is described. As a polymer matrix, two types of liquid low molecular weight PEO analogues e.g. dimethyl ether of poly(ethylene glycol) of 500 g mol−1 average molar mass (PEGDME500) and methyl ether of poly(ethylene glycol) of 350 g mol−1 average molar mass (PEGME350) were used. Room temperature conductivities measured by electrochemical impedance spectroscopy were found to be as high as 10−3-10−4 S cm−1 in the 0.1-1 mol dm−3 range of salt concentrations. Li+ transference numbers higher than 0.5 were measured and calculated using the Bruce-Vincent method. For a complete electrochemical characterization the interphase resistance stability over time was carefully monitored for a period of 30 days. Structural analysis and interactions between electrolyte components were done by Raman spectroscopy. Fuoss-Kraus semiempirical method was applied for estimation of free ions and ionic agglomerates showing that fraction of ionic agglomerates for salt concentration of 0.1-1 mol dm−3 is much lower than in electrolytes containing LiClO4 in corresponding concentrations.  相似文献   

16.
An electrolyte for lithium batteries based on the ionic liquid 3-methy-1-propylimidazolium bis(trifluoromethysulfony)imide (PMIMTFSI) complexed with lithium bis(trifluoromethysulfony)imide (LiTFSI) at a molar ratio of 1:1 has been investigated. The electrolyte shows a high ionic conductivity (∼1.2 × 10−3 S cm−1) at room temperature. Over the whole investigated temperature range the ionic conductivity is more than one order of magnitude higher than for an analogue electrolyte based on N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py14TFSI) complexed with LiTFSI and used here as a benchmark. Raman results indicate furthermore that the degree of lithium coordinated TFSI is slightly lower in the electrolyte based on PMIMTFSI and thus that the Li+ charge carriers should be higher than in electrolytes based on Py14TFSI. An ionic liquid gel electrolyte membrane was obtained by soaking a fibrous fully interconnected membrane, made of electrospun P(VdF-HFP), in the electrolyte. The gel electrolyte was cycled in Li/ionic liquid polymer electrolyte/Li cells over 15 days and in Li/LiFePO4 cells demonstrating good interfacial stability and highly stable discharge capacities with a retention of >96% after 50 cycles (∼146 mAh g−1).  相似文献   

17.
《Journal of power sources》2002,107(1):103-109
Polymer electrolytes consisting of poly(ethylene oxide) (PEO) and lithium salts, such as LiCF3SO3 and LiBF4 are prepared by the ball-milling method. This is performed at various times (2, 4, 8, 12 h) with ball:sample ratio of 400:1. The electrochemical and thermal characteristics of the electrolytes are evaluated. The structure and morphology of PEO–LiX polymer electrolyte is changed to amorphous and smaller spherulite texture by ball milling. The ionic conductivity of the PEO–LiX polymer electrolytes increases by about one order of magnitude than that of electrolytes prepared without ball milling. Also, the ball milled electrolytes have remarkably higher ionic conductivity at low temperature. Maximum ionic conductivity is found for the PEO–LiX prepared by ball milling for 12 h, viz. 2.52×10−4 S cm−1 for LiCF3SO3 and 4.99×10−4 S cm−1 for LiBF4 at 90 °C. The first discharge capacity of Li/S cells increases with increasing ball milling time. (PEO)10LiCF3SO3 polymer electrolyte prepared by ball milling show the typical two plateau discharge curves in a Li/S battery. The upper voltage plateau for the polymer electrolyte containing LiBF4 differs markedly from the typical shape.  相似文献   

18.
A new family of polymeric ionic liquids having pyrrolidinium cation pendant units was synthesized from commercially available poly(diallyldimethylammonium) chloride. A simple anion exchange procedure was applied to the poly(diallyldimethylammonium) chloride using different salts such as LiTFSI, KPF6, LiBF4 and NaDBSA. The anion exchange reaction was quantitative as confirmed by NMR, FT-IR and titration experiments. Among these polymers, poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (TFSI) showed excellent performance as polymer matrix for polymer electrolyte compositions together with pyrrolidinium ionic liquid and lithium salt having a similar TFSI counter-anion. In this sense, free standing mechanically stable transparent polymer films showing an ionic conductivity higher than 10−4 S cm−1 at room temperature were prepared and characterized. Furthermore, the polymer electrolytes presented a wide electrochemical stability window (7.0 V) which makes them interesting candidates for solid-state lithium batteries.  相似文献   

19.
The simple reaction of trialkoxyborates with butyllithium resulted in the obtaining of new lithium borate salts: Li{[CH3(OCH2CH2)nO]3BC4H9}, containing oxyethylene substituents (EO) of n = 1, 2, 3 and 7. Salts of n ≥ 2 show properties of room temperature ionic liquid (RTIL) of low glass transition temperature, Tg of the order from −70 to −80 °C. The ionic conductivity of the salts depends on the number of EO units, the highest conductivity is shown by the salt with n = 3; in bulk its ambient temperature conductivity is 2 × 10−5 S cm−1 and in solution in cyclic propylene sulfite or EC/PC mixture, conductivity increases by an order of magnitude. Solid polymer electrolytes with borate salts over a wide concentration range, from 10 to 90 mol.% were obtained and characterized. Three types of polymeric matrices: poly(ethylene oxide) (PEO), poly(trimethylene carbonate) (PTMC) and two copolymers of acrylonitrile and butyl acrylate p(AN-BuA) were used in them as polymer matrices. It has been found that for systems of low salt concentration (10 mol.%) the best conducting properties were shown by solid polymer electrolytes with PEO, whereas for systems of high salt concentration, of the polymer-in-salt type, good results were achieved for PTMC as polymer matrix.  相似文献   

20.
The electrochemical properties of solvent-free, ternary polymer electrolytes based on a novel poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide polymeric ionic liquid (PIL) as polymer host and incorporating PYR14TFSI ionic liquid and LiTFSI salt are reported. The PIL-LiTFSI-PYR14TFSI electrolyte membranes were found to be chemically stable even after prolonged storage times in contact with lithium anode and thermally stable up to 300 °C. Particularly, the PIL-based electrolytes exhibited acceptable room temperature conductivity with wide electrochemical stability window, time-stable interfacial resistance values and good lithium stripping/plating performance. Preliminary battery tests have shown that Li/LiFePO4 solid-state cells are capable to deliver above 140 mAh g−1 at 40 °C with very good capacity retention up to medium rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号