首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LiCoO2 is the most famous positive electrode (cathode) for lithium ion cells. When LiCoO2 is charged at high charge voltages far from 4.2 V, cycleability of LiCoO2 becomes worse. Causes for this deterioration are instability of pure LiCoO2 crystalline structure and an oxidation of electrolyte solutions LiCoO2 at higher charge voltages. This electrolyte oxidation accompanies with the partial reduction of LiCoO2. We think more important factor is the oxidation of electrolyte solutions. In this work, influence of 10 organic compounds on electrochemical and thermal properties of LiCoO2 cells was examined as electrolyte additives. As a base electrolyte solution, 1 M (M: mol L−1) LiPF6-ethylene carbonate (EC)/ethylmethyl carbonate (EMC) (mixing volume ratio = 3:7) was used. These compounds are o-terphenyl (o-TP), Ph-X (CH3)n (n = 1 or 2, X = N, O or S) compounds, adamantyl toluene compounds, furans and thiophenes. These additives had the oxidation potentials (Eox) between 3.4 and 4.7 V vs. Li/Li+. These Eox values were lower than that (6.30 V vs. Li/Li+) of the base electrolyte. These additives are oxidized on LiCoO2 during charge of the LiCoO2 cells. Oxidation products suppress the excess oxidation of electrolyte solutions on LiCoO2. As a typical example of these organic compounds, o-TP (Eox: 4.52 V) was used to check the fundamental properties of these organic additives. Charge-discharge cycling tests were carried out for the Li/LiCoO2 cells with and without o-TP. Constant current charge at 4.5 V is mainly used as a charge method. Cells with 0.1 wt.% o-TP exhibited slightly better cycling performance and lower polarization than those without additives. Lower polarization arises from a decrease in a resistance of interface between electrolyte solutions and LiCoO2 by surface film formation resulted from oxidation of o-TP. Oxidation products were found by mass spectroscopy analysis to be mixture of several polycondensation compounds made from two to four terphenly monomers. Thermal stability of LiCoO2 with electrolyte solutions did not improve by addition of o-TP. Slightly better charge-discharge cycling properties were obtained by using organic modifiers. However, when industrial applications were considered, drastic improvements have not been obtained yet. One of reasons may be too large influence of the deterioration of stability of pure LiCoO2 structure at high voltage charging for industrial use. We hope to realize the tremendous improvements of high energy, long cycle life and safe lithium cells by the combination of both LiCoO2 with more stable structure such as LiCoO2 treated with MgO and new organic additives with molecular structure more carefully designed.  相似文献   

2.
Electrochemical properties and working mechanisms of benzyl isocyanate compounds as polymerizable electrolyte additives for overcharge protection of lithium ion batteries have been studied by cyclic voltammetry, charge–discharge cycling, overcharge tests, accelerating rate calorimetry (ARC) and in situ Fourier transform infrared spectroscopy (FTIRS). The overcharge and FTIRS data clearly reveal that 4-bromobenzyl isocyanate (Br-BIC) can electrochemically polymerize at 5.5 V (versus Li/Li+) to form an overcharge-inhibiting (probably insulating) film on the cathode surface. In addition, is found the Br-BIC does slightly improve the charge/discharge performance of a lithium ion battery. Furthermore, Br-BIC and benzyl isocyanate show beneficial solid electrolyte interphase (SEI) formation behaviour on graphite in propylene carbonate based electrolyte solutions.  相似文献   

3.
Advances in the stability and efficiency of electronic structure codes along with the increased performance of commodity computing resources has enabled the automated high-throughput quantum chemical analysis of materials structure libraries containing thousands of structures. This allows the computational screening of a materials design space to identify lead systems and estimate critical structure-property limits which should prove an invaluable tool in informing experimental discovery and development efforts. Here this approach is illustrated for lithium ion battery additives. An additive library consisting of 7381 structures was generated, based on fluoro- and alkyl-derivatized ethylene carbonate (EC). Molecular properties (e.g. LUMO, EA, μ and η) were computed for each structure using the PM3 semiempirical method. The resulting lithium battery additive library was then analyzed and screened to determine the suitability of the additives, based on properties correlated with performance as a reductive additive for battery electrolyte formulations.  相似文献   

4.
分别以α-Al2O3和Li2TiO3作为锂离子电池正极和负极中的安全添加剂,提出了安全添加剂的作用模型,系统比较了有无安全添加剂的两组电池的电化学性能和安全性能。电化学性能测试结果表明,安全添加剂的加入会很小幅度降低锂离子电池的能量密度;电池的倍率性能不受影响,其在5 C放电倍率时容量保持率达到82.3%(以1 C为基准);电池的预期循环寿命达2409次(按照80% DOD计算),相比对比组电池的896次预算寿命大幅增加。安全性能测试结果表明,添加了安全添加剂的电池能够通过严苛的穿刺测试、重物撞击测试和外短路测试等安全测试,安全添加剂的存在可以有效避免电池内部局部热点的产生,使不可控的内部短路转变为可控的低倍率放电,显著提高电池的安全性能,在商业化方面展示出良好的应用前景。  相似文献   

5.
锂二次电池中电极与电解液之间的相容性对电池的电化学性能有重要影响,利用表面改性剂可以改善电极与电解液之间的相容性和界面性能,提高电池的性能。本文总结和归纳了有机硅表面改性剂对锂二次电池负极(锂金属、石墨和硅负极)改性的研究进展,展望了有机硅表面改性剂在锂二次电池中的应用前景。  相似文献   

6.
This paper proposes a methodology and approach to understand battery performance and life through driving cycle and duty cycle analyses from electric and hybrid vehicle (EHV) operation in real-world situations. Conducting driving cycle analysis with trip data collected from EHV operation in real life is very difficult and challenging. In fact, no comprehensive approach has been accepted to date, except those using standard driving cycles on a dynamometer or a track. Similarly, analyzing duty cycle performance of a battery under real-life operation faces the same challenge. A successful driving cycle analysis, however, can significantly enhance our understanding of EHV performance in real-life driving. Likewise, we also expect similar results through duty cycle analysis for batteries. Since 1995, we have been developing tools to analyze EHV and power source performance. In particular, we were able to collect data from a fleet of 15 Hyundai Santa Fe electric sports utility vehicles (e-SUVs) operated on Oahu, Hawaii; from July 2001 to June 2003 to allow driving and duty cycle analyses in order to understand battery pack performance from a variety of EHV operating conditions. We thus developed a comprehensive approach that comprises fuzzy logic pattern recognition (FL-PR) techniques to perform driving and duty cycle analyses. This approach has been successfully applied to EHV performance analysis via the creation of a compositional driving profile called “driving cycle profile” (DrCP) for each trip. The same approach was used to analyze battery performance via the construction of “duty cycle profile” (DuCP) to express battery usage under various operating conditions. The combination of the two analyses enables us to understand both the usage profile of EHV and battery performance in synergetic details and in a systematic manner using a pattern recognition technique.  相似文献   

7.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2019年2月1日至2019年3月31日上线的锂电池研究论文,共有2208篇,选择其中100篇加以评论。正极材料主要研究了层状材料的结构演变及表面包覆对层状和尖晶石材料的影响。硅基复合负极材料研究侧重于嵌脱锂机理以及SEI界面层,金属锂负极的研究侧重于通过集流体、三维电极和表面覆盖层的设计以及电解液添加剂来提高其循环性能,并与锂硫和固态电池应用结合研究。固态电解质侧重于制备方法和离子输运机理研究,电解液添加剂的研究目标是提高电池充电至高电压时的稳定性。全固态电池的重点在于电极和电池设计和工艺研究。除了以材料为主的研究之外,针对电池分析、理论模拟和电池模型的研究论文也有多篇。  相似文献   

8.
γ-Butyrolactone (GBL) has a high boiling point, a low freezing point, a high flashing point, a high dielectric constant and a low viscosity. GBL is a very preferable solvent for lithium ion batteries. However, GBL readily undergoes reductive decomposition on the surface of the negative electrodes, and it forms a solid electrolyte interphase (SEI) with a large resistance. It is causing deterioration of battery performances. In this work, effects of cyclic carbonates as additives to GBL electrolytes were investigated. As these carbonates, ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), vinylethylene carbonate (VEC), and phenylethylene carbonate (PhEC) were investigated using LiCoO2/graphite cells. The effects of these additives were evaluated from the viewpoints of improvement of the battery performance and suppression of the reductive decomposition of GBL. VC, VEC and PhEC were effective to suppress the excess reductive decomposition of GBL. Battery performances were improved and the following results were obtained from the electrochemical measurements of LiCoO2/graphite cells with GBL-based electrolytes. Residual capacity was high in the order of VEC > VC > PhEC. Rate capability was high in the order of PhEC > VC > VEC. These additives have advantages and disadvantages. By optimizing electrolyte formulation, the performances of Li-ion batteries using GBL-based electrolytes will be improved further.  相似文献   

9.
Metal hydride batteries research using nanostructured additives   总被引:1,自引:0,他引:1  
We describe here, our recent research efforts to improve the capacity of metal hydride batteries using nanostructured additives. Nanostructured additives of palladium, copper and nickel were incorporated separately into the negative electrode of the metal hydride batteries. The nanomaterials were synthesized by template-based methods and characterized by scanning electron microscopy. These nanomaterials were incorporated in the negative electrode of the metal hydride battery and the electrochemical performance at 2 C rate was studied. The nanomaterial-incorporated negative electrodes all showed increased cell voltage and negative electrode potential compared to that of a pristine cell. The increase in discharge capacity for a cut-off voltage of 1 V depends on the nanomaterial incorporated and a comparative analysis of the performance of the different batteries is presented.  相似文献   

10.
Electrode morphology has significant influence on the performance of lithium‐ion batteries in that it controls electrical conductivity and electrode utilization by establishing electrical connectivity in the electrode. The present study investigates the effect of the electrode morphology on battery performance by combining two different mathematical models. First, a two‐dimensional, direct numerical simulation (DNS) model is introduced, which stochastically generates electrode morphology and calculates electrical conduction and electrode utilization. Various simulations are conducted to evaluate the effect of the active particle coating, conductive agent loading, particle size, and electrode compression by using the DNS model. Second, data acquired from the DNS model are applied to the blended‐electrode model to evaluate battery performance. Calculation result confirms that electrode morphologies have significant effects on both capacity and power of lithium‐ion batteries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The nanoparticles of Mn1.5[Cr(CN)6]∙mH2O@Ni1.5[Cr(CN)6]∙nH2O core-shell prussian blue analogues (PBA) embedded with carbon additives (PBA-C) were synthesized and characterized as electrode material for solid state battery application. The impedance spectroscopy and cyclic voltametry were used to study the electrochemical properties by adding functionalized carbon in 1:1 proportion to improve the electrical performance. The value of room temperature electrical conductivity of core-shell PBA and core-shell nanoparticles mixed with vulcan carbon (PBA-C) are found to be 1.574 × 10−3 and 1.92 × 10−3 Scm−1, respectively. Using Li7La3Zr2O12 (LZZO) electrolyte, single cell was fabricated with PBA-C material, and studied its charging-discharging cycles, which exhibits higher current density with stable performance for 400 cycles for time slots of 400 min. The study reveals that the PBA core-shell nanoparticles mixed with carbon (PBA-C) may be a potential candidate as an electrode material in the form of a single cell using LZZO electrolyte.  相似文献   

12.
One ether-functionalized guanidinium ionic liquid is used as new electrolytes for lithium battery. Viscosity, conductivity, behavior of lithium redox, chemical stability against lithium metal, and charge-discharge characteristics of lithium batteries, are investigated for the IL electrolytes with different concentrations of lithium salt. Though the cathodic limiting potential of the IL are 0.7 V vs. Li/Li+, the lithium plating and striping on Ni electrode can be observed in the IL electrolytes, and the IL electrolytes show good chemical stability against lithium metal. Li/LiCoO2 cells using the IL electrolytes without additives have good capacity and cycle property at the current rate of 0.2 C when the LiTFSI concentration is higher than 0.3 mol kg−1, and the cell using the IL electrolyte with 0.75 mol kg−1 LiTFSI owns good rate property. The activation energies of the LiCoO2 electrode for lithium intercalation are estimated, and help to analyze the factors determining the rate property.  相似文献   

13.
Ionic liquids (ILs) belong to new branch of salts with unique properties which their applications have been increasing in electrochemical systems especially lithium-ion batteries. In the present work, for the first time, the effects of four ionic liquids as an electrolyte additive in battery's electrolyte were studied on the hydrogen and oxygen evolution overpotential and anodic layer formation on lead–antimony–tin grid alloy of lead acid battery. Cyclic and linear sweep voltammetric methods were used for this study in aqueous sulfuric acid solution. The morphology of grid surface after cyclic redox reaction was studied using scanning electron microscopy. The results show that most of added ionic liquids increase hydrogen overpotential and whereas they have no significant effect on oxygen overpotential. Furthermore ionic liquids increase antimony dissolution that might be related to interaction between Sb3+ and ionic liquids. Crystalline structure of PbSO4 layer changed with presence of ionic liquids and larger PbSO4 crystals were formed with some of them. These additives decrease the porosity of PbSO4 perm selective membrane layer at the surface of electrode. Also cyclic voltammogram on carbon–PbO paste electrode shows that with the presence of ionic liquids, oxidation and reduction peak current intensively increased.  相似文献   

14.
Several isocyanate compounds have been investigated with regard to their performance as film forming electrolyte additives in propylene carbonate (PC) and EC/EMC-based electrolytes. In situ and ex situ analytical methods were applied to understand the differences in performance. Particular attention was paid to the differences of aromatic and linear isocyanate compounds.  相似文献   

15.
The current highly flammable configurations for rechargeable lithium batteries generate safety concerns. Although commercial fire retardant additives have been investigated, they tend to decrease the overall efficiency of the battery. We report here ionically conductive, non-halogenated lithium battery additives based on a methoxyethoxyethoxyphosphazene oligomer and the corresponding high polymer, which can increase the fire resistance of a battery while retaining a high energy efficiency. Conductivities in the range of 10−4 S cm−1 have been obtained for self-extinguishing, ion-conductive methoxyethoxyethoxyphosphazene oligomers. The addition of 25 wt% high polymeric poly[bis(methoxyethoxyethoxy)phosphazene] to propylene carbonate electrolytes lowers the flammability by 90% while maintaining a good ionic conductivity of 2.5 × 10−3 S cm−1.  相似文献   

16.
Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources.In order to ensure the safety and improve the performance,the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range.The effect of temperature on the capacity fade and aging are simply investigated.The electrode structure,including electrode thickness,particle size and porosity,are analyzed.It is found that all of them have significant influences on the heat generation of battery.Details of various thermal management technologies,namely air based,phase change material based,heat pipe based and liquid based,are discussed and compared from the perspective of improving the external heat dissipation.The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications,and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment.The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.  相似文献   

17.
2,2-Dimethoxy-propane (DMP) was studied as an additive in 1 mol dm−3 LiPF6 ethylene carbonate and diethyl carbonate (1:1, w/w) for lithium-ion battery, which was characterized by cyclic voltammetry and half cell tests. Cyclic voltammetry and half cell data show that the use of DMP as an additive to the organic solutions at very low level (ca. 0.005 wt%) offers the advantage of forming fully developed passive films on the graphite anode surface. The electrochemical performance of the additive-containing electrolytes in combination with LiCoO2 cathode and graphitic anode was also tested in commercial cells 103448. The results reveal that the cyclic life test and storage performance at high temperature (ca. 60 °C) in electrolyte with DMP additive was better than that in an electrolyte without additive. Therefore, DMP can be considered as a desirable additive in electrolyte for lithium-ion batteries operating at high temperature, ca. 60 °C.  相似文献   

18.
Polymers have been successfully used as electrode compounds and separator/electrolyte materials for lithium ion batteries (LiBs) due to their inherent outstanding properties such as low-density, easy of processing, excellent thermal, mechanical and electrical properties and easily tailored functional performance matching the final device requirements. Battery performance strongly depends on the polymer type used. The physico-chemical properties of the polymers that are being used as different battery components need to be further improved to boost the development of the next generation of batteries for the electric vehicle industry, where increased energy density and safety are required. Considering its role in LIBs, this review summarizes the latest advances in the field of polymers applied as electrode compounds and separator/electrolytes. For each battery component, the state-of-art is divided by polymer type. Current bottlenecks and challenges that face polymers in LIBs are shown, and possible strategies to face them are provided.  相似文献   

19.
锂离子电池安全性问题的本质是电池内部发生了热失控,热量不断的累积,造成电池内部温度持续上升,其外在的表现是燃烧、爆炸等。因此,锂离子电池的安全性与比能量、使用温度和倍率性能等存在一定的矛盾。电池能量密度越高、倍率性能越快和使用环境越恶劣,其能量剧烈释放时对电池体系的影响就越大,安全问题也越突出。当前锂离子电池电解液一般由低闪点的碳酸酯、对痕量水和温度敏感的LiPF6和其它添加剂组成,本身具有高度可燃性。同时,电解液与正负极材料之间形成界面膜被认为是电池热失控的起点。因此,电解液改性是提升电池安全性的重要措施。本文分析了离子液体和氟代溶剂等溶剂对电解液安全性的提升效果,对比了多种锂盐对电解液安全性的影响,介绍了阻燃剂、过充保护剂、锂枝晶抑制剂和成膜稳定剂等电解液添加剂对锂电池安全性的改善。最后,从电池整体应用性能的角度出发,讨论了今后高安全性锂离子电池电解液的研发方向。  相似文献   

20.
《Journal of power sources》2006,153(2):328-335
We present the results of novel type additives to improve the cathode cycleability performance. Benzene derivatives (biphenyl and o-terphenyl) and heterocyclic compounds (furan, thiophene, N-methylpyrrole and 3,4-ethylenedioxythiophene), which have lower oxidation potentials than those of electrolyte solvents are picked up. We use MO calculations in the selection of additives and prove that the calculated HOMO values agree well with the measured oxidation potentials. To clarify the additive performance, electrochemical properties and cycleability of the additive are investigated. The additives are found to be decomposed on cathode to form very thin film. We have named this resulting novel-type thin surface film as electro-conducting membrane (ECM) since it is different from solid electrolyte interphase (SEI) by the point of its electro-conductivity. The nature and the component of ECM are studied with X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) in details. It is concluded that these additives, which were formerly known as overcharge protecting proofs, contribute to improve cathode cycleability by forming very thin cathode surface layer in the case of slight amount of addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号