首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feasibility analysis of methane reforming by hydrogen sulfide for hydrogen production from technical and economical viewpoints was made. An improved Hydrogen Sulfide Methane Reformation (H2SMR) process flowsheet was proposed in order to compare its production costs with those of Steam Methane Reformation (SMR) conventional process. Major findings were: high production of hydrogen, a partial self-sustainability process since some of the hydrogen produced could be used as an energy source, no greenhouse gases generated, common sizes of main equipment for a typical H2 production and the possibility of eliminating Claus plants. Aspen Plus® V8.4 simulation software was used. Results showed H2SMR is a more economical source of H2 production than SMR conventional process, with an estimated cost of 1.41 $/kg.  相似文献   

2.
Conventional liquid hydrogen (LH2) production consists of two basic steps: (1) gaseous hydrogen (GH2) production via steam methane reformation followed by purification by means of pressure swing adsorption (PSA), and (2) GH2 liquefaction. LH2 produced by the conventional processes is not carbon neutral because of the carbon dioxide (CO2) emission from PSA operation. A novel concept is herein presented and flowsheeted for LH2 production with zero carbon emission using methane (CH4) or landfill gas as feedstock. A cryogenic process is used for both H2 separation/purification and liquefaction. This one-step process can substantially increase the efficiency and reduce costs because no PSA step is required. Furthermore, the integrated process results in no CO2 emissions and minimal H2 losses. Of the five flowsheets presented, one that combines low and high temperature CO/CH4 reforming reactions in a single reactor shows the highest overall efficiency with the first and second law efficiencies of 85% and 56%, respectively. The latter figure assumes 10% overall energy loss and 30% efficiency for the cryogenic process.  相似文献   

3.
A modified version of the Sulfur–Iodine cycle, here called the Sulfur–Sulfur Cycle, offers an all-fluid route to thermochemical hydrogen and avoids implications of the corrosive HI–H2O azeotropic mixture:
equation(1)
4I2(l) + 4SO2(l) + 8H2O(l) ↔ 4H2SO4(l) + 8HI(l) (120 °C)
equation(2)
8HI(l) + H2SO4(l) ↔ H2S(g) + 4H2O(l) + 4I2(l) (120 °C)
equation(3)
3H2SO4(g) ↔ 3H2O(g)+3SO2(g) + 1½O2(g) (850 °C)
equation(4)
H2S(g) + 2H2O(g) ↔ SO2(g) + 3H2(g) (900–1500 °C)
  相似文献   

4.
The performance of hydrogen production via steam methane reforming (SMR) is evaluated using exergy analysis, with emphasis on exergy flows, destruction, waste, and efficiencies. A steam methane reformer model was developed using a chemical equilibrium model with detailed heat integration. A base-case system was evaluated using operating parameters from published literature. Reformer operating parameters were varied to illustrate their influence on system performance. The calculated thermal and exergy efficiencies of the base-case system are lower than those reported in literature. The majority of the exergy destruction occurs due to the high irreversibility of chemical reactions and heat transfer. A significant amount of exergy is wasted in the exhaust stream. The variation of reformer operating parameters illustrated an inverse relationship between hydrogen yield and the amount of methane required by the system. The results of this investigation demonstrate the utility of exergy analysis and provide guidance for where research and development in hydrogen production via SMR should be focused.  相似文献   

5.
Hydrogen is a valuable energy resource and it is widespread in nature. As a matter of fact, researches on hydrogen production are currently experiencing an increasing interest from scientists around the world since this resource is clean and renewable. Several methods of producing hydrogen have been developed in industrialized countries such as the United States of America and Germany.This paper is interested in the process by which hydrogen sulfide of geothermal areas is exploited for hydrogen production. In fact, research advances in this field have concluded that hydrogen sulfide of geothermal resources can contribute significantly and economically in the process of hydrogen generation.The present paper was principally conducted from a literature study and a synthesis of works achieved in recent years in order to highlight the various aspects of hydrogen production from hydrogen sulfide and particularly to study the possibility of the exploitation of Algeria’s thermal resources in this field.  相似文献   

6.
7.
There is a growing interest in the usage of hydrogen as an environmentally cleaner form of energy for end users. However, hydrogen does not occur naturally and needs to be produced through energy intensive processes, such as steam reformation. In order to be truly renewable, hydrogen must be produced through processes that do not lead to direct or indirect carbon dioxide emissions. Dry reformation of methane is a route that consumes carbon dioxide to produce hydrogen. This work describes the production of hydrogen from biomass via anaerobic digestion of waste biomass and dry reformation of biogas. This process consumes carbon dioxide instead of releasing it and uses only renewable feed materials for hydrogen production. An end-to-end simulation of this process is developed primarily using Aspen HYSYS® and consists of steady state models for anaerobic digestion of biomass, dry reformation of biogas in a fixed-bed catalytic reactor containing Ni–Co/Al2O3 catalyst, and a custom-model for hydrogen separation using a hollow fibre membrane separator. A mixture-process variable design is used to simultaneously optimize feed composition and process conditions for the process. It is identified that if biogas containing 52 mol% methane, 38 mol% carbon dioxide, and 10 mol% water (or steam) is used for hydrogen production by dry reformation at a temperature of 837.5 °C and a pressure of 101.3 kPa; optimal values of 89.9% methane conversion, 99.99% carbon dioxide conversion and hydrogen selectivity 1.21 can be obtained.  相似文献   

8.
Hydrogen will play an integral role in achieving net-zero emissions by 2050. Many studies have been focusing on green hydrogen, but this method is highly electricity intensive. Alternatively, methane pyrolysis can produce hydrogen without direct CO2 emissions and with modest electricity inputs, serving as a bridge from fossil fuels to renewable energies. Microwaves are an efficient method of adding the required energy for this endothermic reaction. This study introduces a new method of CO2-free hydrogen production via non-plasma methane pyrolysis using microwaves and carbon products of this process. Carbon particles in the fluidized bed absorb microwave energy and create a hot medium (>1200 °C) in contact with flowing methane. As a result, methane decomposes into hydrogen and solid carbon achieving over 90% hydrogen selectivity with ∼500 cumulative hours of experiments This modular pyrolysis system can be built anywhere with access to natural gas and electricity, enabling distributed hydrogen production.  相似文献   

9.
Geothermal power plants emit high amount of hydrogen sulfide (H2S). The presence of H2S in the air, water, soils and vegetation is one of the main environmental concerns for geothermal fields. There is an increasing interest in developing suitable methods and technologies to produce hydrogen from H2S as promising alternative solution for energy requirements. In the present study, the AMIS technology is the invention of a proprietary technology (AMIS® - acronym for “Abatement of Mercury and Hydrogen Sulfide” in Italian language) for the abatement of hydrogen sulphide and mercury emission, is primarily employed to produce hydrogen from H2S. A proton exchange membrane (PEM) electrolyzer operates at 150 °C with gaseous H2S sulfur dimer in the anode compartment and hydrogen gas in the cathode compartment. Thermodynamic calculations of electrolysis process are made and parametric studies are undertaken by changing several parameters of the process. Also, energy and exergy efficiencies of the process are calculated as % 27.8 and % 57.1 at 150 °C inlet temperature of H2S, respectively.  相似文献   

10.
Mesoporous graphitic carbon nitride (mpg-CN) was modified with cobalt sulfide (CoS) by using an impregnation-sulfidation approach. The gas-phase sulfidation of CoS in nanoporous networks at certain temperature allows for the formation of intimate contact between the host carbon nitride and CoS nanoparticle, establishing noble-metal free heterojunctions for charge separation and collection at material interface. The resultant CoS/mpg-CN was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2-sorption, X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy and electrochemical measurement. On the basis of the physicochemical and electrocatalytic characterization results of CoS/mpg-CN, it was revealed that CoS functioned as a cocatalyst to promote the migration of excited electron from mpg-CN toward CoS as well as to provide reactive sites for H2 production at lower overpotentials. As a result, the rate of H2 evolution over mpg-CN under visible light illumination (λ > 420 nm) was significantly improved after loading with CoS and the optimal loading amount of CoS was found to be 1.0 at. %.  相似文献   

11.
With the goal of eventually developing a replacement for the Claus process that also produces H2, we have explored the possibility of decomposing hydrogen sulfide through a thermochemical cycle involving iodine. The thermochemical cycle under investigation leverages differences in temperature and reaction conditions to accomplish the unfavorable hydrogen sulfide decomposition to H2 and elemental sulfur over two reaction steps, creating and then decomposing hydroiodic acid. This proposed process is similar to ideas put forth in the 1980s and 1990s by Kalina, Chakma, and Oosawa, but makes use of thermochemical hydrogen iodide decomposition methods and catalysts rather than electrochemical or photoelectrochemical methods.Process models describing a potential implementation of this thermochemical cycle were created. Motivated by the process model results, experimentation showed the possibility of using alternative solvents to dramatically decrease the energy requirements for the process. Further process modeling incorporated these alternative solvents and suggests that this theoretical hydrogen sulfide processing unit has favorable economic and environmental properties.  相似文献   

12.
Combined reaction–separation processes are a widely explored method to produce hydrogen from endothermic steam reforming of hydrocarbon feedstock at a reduced reaction temperature and with fewer unit operation steps, both of which are key requirements for energy efficient, distributed hydrogen production. This work introduces a new class of variable volume batch reactors for production of hydrogen from catalytic steam reforming of methane that operates in a cycle similar to that of an internal combustion engine. It incorporates a CO2 adsorbent and a selectively permeable hydrogen membrane for in situ removal of the two major products of the reversible steam methane reforming reaction. Thermodynamic analysis is employed to define an envelope of ideal reactor performance and to explore the tradeoff between thermal efficiency and hydrogen yield density with respect to critical operating parameters, including sorbent mass, steam to methane ratio and fraction of product gas recycled. Particular attention is paid to contrasting the variable volume batch-membrane reactor approach to a conventional fixed bed reaction–separation approach. The results indicates that the proposed reactor is a viable option for low temperature distributed production of hydrogen from methane, the primary component of natural gas feedstock, motivating a detailed study of reaction/adsorption kinetics and heat/mass transfer effects.  相似文献   

13.
The decomposition of hydrogen sulfide (H2S) with simultaneous hydrogen (H2) generation offers a sustainable energy production option and an environmental pollution abatement strategy. H2S is both naturally occurring and human-made. In the future, H2S production is expected to increase due to increased heavy oil refining. Currently, H2S is largely converted to sulfur and water using industrial processes such as the Claus process, however, it would be more useful and economical to convert H2S to sulfur and H2 instead. H2 currently comes from the steam reforming of natural gas, which is an energy-intensive process. Because H2 is a valued commodity and global consumption is expected to increase, alternative sources of H2 and hydrogen conservation have become topics of active research. Alberta is an especially large consumer of H2 due to its oil sands processing. H2 from petroleum-based H2S sources could be reused in petroleum upgrading, as a partial replacement of steam methane reforming. This review paper highlights some of the methods of H2S utilization, such as partial oxidation, reformation and decomposition techniques and approaches that convert H2S to sulfur, water and, more importantly, H2. To date, almost no technologies exist that are suitable for converting H2S to sulfur and H2 for industrial-scale applications. Here, we survey the literature to identify the most promising approach.  相似文献   

14.
Direct H2S decomposition induced by plasma with an aid of alumina-supported metal sulfide semiconductors (ZnS/Al2O3 and CdS/Al2O3) for the production of hydrogen was investigated in a dielectric barrier discharge (DBD) reactor. Effects of specific input energy (SIE), feed flow rate, metal sulfide loading, and added hydrogen on the performance of H2S decomposition were studied. With the aids of ZnS/Al2O3 and CdS/Al2O3, full conversion was obtained at reasonably low energy costs. The 100-h test runs indicated that both ZnS/Al2O3 and CdS/Al2O3 were stable in the course of H2S decomposition. A supported metal sulfide solid solution (Zn0.4Cd0.6S/Al2O3) exhibited higher performance than ZnS/Al2O3 and CdS/Al2O3, achieving full conversion at a reduced energy cost. The mechanism of the plasma-induced H2S decomposition with an aid of a semiconductor catalyst was tentatively proposed.  相似文献   

15.
Dry reforming of methane (DRM) is a reaction that converts two greenhouse gases, CH4 and CO2, to syngas (H2 + CO). Gas chromatography (GC) is almost exclusively used to evaluate catalyst performance. In order to measure the hydrogen production rate with GC, an inert gas with a constant flow rate is usually fed into the system as an internal standard. In this work, an IR spectroscopy-based method is used to achieve the same technical goal with much higher time resolution and much smaller measurement errors. IR measures the molar fractions of CH4, CO2, CO and H2O in the reaction effluent. By applying general mass balance principle and the relevant reaction stoichiometries, H2 production rate is successfully measured without an internal standard. The results are quite close to those obtained by GC with much higher time resolution, making it possible to observe fast reaction kinetics.  相似文献   

16.
Tierga and Ilmenite Fe-based ores are studied for the first time in the catalytic decomposition of methane (CDM) for the production of carbon dioxide-free hydrogen and carbon nanomaterials. Tierga exhibits superior catalytic performance at 800 °C. The effect of the reaction temperature, space velocity and reducing atmosphere in the catalytic decomposition of methane is evaluated using Tierga. The highest stability and activity (70 vol% hydrogen concentration) is obtained at 850 °C using methane as a reducing agent. Reduction with methane causes the fragmentation of the iron active phase and inhibits the formation of iron carbide, improving its activity and stability in the CDM. Hybrid nanomaterials composed of graphite sheets and carbon nanotubes with a high degree of graphitization are obtained. Considering its catalytic activity, the carbon quality, and the low cost of the material, Tierga has a competitive performance against synthetic iron-catalysts for carbon dioxide-free hydrogen and solid carbon generation.  相似文献   

17.
Industrial-scale implementation of liquid metal bubble reactors (LMBRs) to produce hydrogen by methane decomposition will require large gas holdups (e.g., 20–30 vol%) and elevated gas pressures (>20 bar) to allow for practical reactor sizes. A realistic reactor design must account for the coupling between reaction kinetics and hydrodynamic effects. The gas holdup is predicted from the superficial gas velocity with a drift flux model that was experimentally corroborated in gas-molten metal mixtures. Large superficial gas velocities (>0.40 m s−1) are required to achieve gas holdups of about 25 vol% in liquid metal baths (LMBs). A noncatalytic kinetic model is developed to provide thermodynamically consistent decomposition rates at methane conversions approaching equilibrium. The coupled model optimizes the LMB dimensions (diameter and length) and the inlet pressure to minimize the volume of liquid metal when the hydrogen production rate, bath temperature, methane conversion, metal composition, and maximum gas holdup are specified. For example, 200 kt a−1 of hydrogen can be produced in an LMBR containing at least 96.5 m3 of molten tin held at 1100 °C in a bath measuring 3.50 m in diameter and 14.3 m in length, with an inlet methane pressure of 57.8 bar resulting in an average gas holdup of 29.7 vol% and a methane conversion of 65%.  相似文献   

18.
Supportless Ni-Pd-0.1CNT foamy nanocatalyst with specific surface area of 611.3 m2/g was produced by electroless deposition of nickel, palladium and multiwall carbon nanotube (MWCNT) on interim polyurethane substrate. Application of temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) data into Kissinger (Redhead) kinetic model showed lessening of their activation energies due to Pd and CNT addition. Presence of foamy Ni/SiC caused 8% higher steam reforming of methane; while Ni-Pd-0.1CNT presence resulted in 22% higher methane conversion. The catalytic behavior of the samples was described by morphological and compositional studies which were carried out by transmission electron microscope (TEM), field emission scanning electron microscope (FESEM) equipped with energy dispersive spectroscopy (EDS) and atomic absorption spectrometer (AAS) pondered with Brunauer–Emmett–Teller (BET), TPR, TPO and X-ray diffraction (XRD).  相似文献   

19.
A series of Mn2+ doped CdS photocatalysts were prepared by a co-precipitation method and characterized by XRD, DRS, TEM, and XPS techniques. While the band gap, crystal phase and the morphology of CdS nanocrystal were not found to be affected noticeably by Mn2+ doping, there was an optimal Mn2+ doping content of wt 0.5% where the hydrogen production was more than doubled compared to pure CdS. Calculations of density functional theory (DFT) with plane waves and pseudopotentials were used to characterize the doping effect of Mn in cubic CdS. It is assumed that Mn2+ serving as shallow trapping sites can separate e−/h+ pairs at surface of nanosized CdS, so as to greatly reduce their surface recombination and which in turn leads to improved hydrogen yield.  相似文献   

20.
Underexpanded, cryogenic hydrogen and methane jets were measured using laser Raman scattering diagnostic. The jets were released from 1 mm to 1.25 mm orifices for the stagnation pressure ranges of 2–6 bar and temperature ranges of 37–46 K (hydrogen) and 112–189 K (methane). Raman signals are inherently small, thus a denoising algorithm was developed to substantially reduce the noise hindering the statistical analysis of the data. The time-averaged concentration and temperature data were plotted to show a hyperbolic decay law along the jet centerline and a Gaussian distribution in the radial direction. The concentration fluctuations of the cryogenic jets are similar to those of warm jets, the centerline RMS mass fraction decays similarly to the mean mass fraction, and the highest radial concentration fluctuations appear in the shear layer. Thus, the self-similar characteristics of the cryogenic jets are comparable with room-temperature jets for the present test conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号