首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. In this paper, a new battery thermal management method using a reciprocating air flow for cylindrical Li-ion (LiMn2O4/C) cells was numerically analyzed using (i) a two-dimensional computational fluid dynamics (CFD) model and (ii) a lumped-capacitance thermal model for battery cells and a flow network model. The battery heat generation was approximated by uniform volumetric joule and reversible (entropic) losses. The results of the CFD model were validated with the experimental results of in-line tube-bank systems which approximates the battery cell arrangement considered for this study. The numerical results showed that the reciprocating flow can reduce the cell temperature difference of the battery system by about 4 °C (72% reduction) and the maximum cell temperature by 1.5 °C for a reciprocation period of τ = 120 s as compared with the uni-directional flow case (τ = ∞). Such temperature improvement attributes to the heat redistribution and disturbance of the boundary layers on the formed on the cells due to the periodic flow reversal.  相似文献   

2.
Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery   总被引:1,自引:0,他引:1  
A lumped-parameter thermal model of a cylindrical LiFePO4/graphite lithium-ion battery is developed. Heat transfer coefficients and heat capacity are determined from simultaneous measurements of the surface temperature and the internal temperature of the battery while applying 2 Hz current pulses of different magnitudes. For internal temperature measurements, a thermocouple is introduced into the battery under inert atmosphere. Heat transfer coefficients (thermal resistances in the model) inside and outside the battery are obtained from thermal steady state temperature measurements, whereas the heat capacity (thermal capacitance in the model) is determined from the transient part. The accuracy of the estimation of internal temperature from surface temperature measurements using the model is validated on current-pulse experiments and a complete charge/discharge of the battery and is within 1.5 °C. Furthermore, the model allows for simulating the internal temperature directly from the measured current and voltage of the battery. The model is simple enough to be implemented in battery management systems for electric vehicles.  相似文献   

3.
The preparation and properties of multi-component molten salts   总被引:2,自引:0,他引:2  
This paper was focused on thermal stability of molten salts and their thermo-physical properties at high temperature. In this experiment, multi-component molten salts composed of potassium nitrate, sodium nitrite and sodium nitrate with 5% additive A of the chlorides were prepared by statical mixing method. The experiments found molten salt with 5% additive A had higher thermal stability and its best operating temperature would be increased to 550 °C from 500 °C when comparing to ternary nitrate salt. Meanwhile, thermal stability and thermal cycling analysis showed molten salts with 5% additive A had lower freezing point and loss of nitrite content and deterioration time of molten salts were reduced at the same time. DSC tests also indicated loss of latent heat in molten salts with 5% additive A was decreased. Besides, thermo-physical properties measured showed molten salt with 5% additive A had a heat capacity of 2.32 kJ/kg °C, lower than 4.19 kJ/kg °C for water between 0 °C and 100 °C and a low viscosity range from 3.0 to 1.4 cp between 150 °C and 500 °C, analogous with 1.8–0.3 cp for water between 0 °C and 100 °C. Other thermo-physical properties, such as thermal conductivity, density and linear thermal expansion, were also determined here.  相似文献   

4.
Chi-ming Lai  R.H. Chen 《Solar Energy》2011,85(9):2053-2060
In a Photovoltaic (PV) system, heat is generated by an operating diode. Because DC combiner boxes are waterproof, dustproof, air tight and made of heat-insulating material, thermal energy is easily accumulated, affecting the performance and safety of power cables and other electronic components near the diodes in the DC combiner box. This study utilizes a heat pipe as a channel for heat dissipation to conduct the heat out of a DC combiner box without destroying the air-tightness of the box. An existing DC combiner box was improved upon using this method of heat dissipation. The measured heat flow and temperature demonstrate that the proposed method is feasible. The influence of the condensation section temperature on the maximum heat transfer of the heat pipe was also investigated by experiment. The maximum heat transfer rate of the heat pipe was found to increase with the condensation section temperature of the heat pipe. When the condensation temperature was 20 °C, 30 °C and 40 °C, the maximum heat transfer rate of the heat pipe was 21.6 W, 29.6 W and 39.7 W, respectively.  相似文献   

5.
A compact thermal model was established to model thermal characterization of a microchannel cold plate for high temperature uniformity in multiple heat sources. Analytical calculation of the compact model was presented. Experiments were also conducted to validate the model. The comparison reveals that the measured temperatures are close to the ones predicted by the compact thermal model. The cold plate can help multiple heat sources achieve high temperature uniformity, and the maximum temperature difference among the heat sources is 1.3 °C in the present experimental cases. Moreover, a straight minichannel cold plate was designed and tested under the same flow rate. The measured results show that there exists relatively large temperature gap among the heat sources, and the maximum value is 6.7 °C.  相似文献   

6.
The artificial neural network (ANN) approach is generic technique for mapping non-linear relationships between inputs and outputs without knowing the details of these relationships. In this paper, an application of the ANN has been presented for a PID controlled heat pump dryer. In PID controlled heat pump dryer, air velocity changed according to the temperature value which is set in process control device. Heat pump dryer was tested drying of hazelnut at 40 °C, 45 °C and 50 °C drying air temperatures. By training the experiment results with ANN, drying air velocities, moisture content of hazelnuts and total drying time were predicted for 42 °C, 44 °C, 46 °C and 48 °C drying air temperatures.  相似文献   

7.
LiMn1.5Ni0.5O4 has been synthesized by an ultrasonic-assisted sol-gel method. The precursor is heat treated at a series of temperatures from 650 °C to 1000 °C. The structure and physical-chemical properties of the as-prepared powder are investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) thermal gravimetric and galvanostatic charge-discharge tests in detail. As temperature goes up, the particle size increases, the reactivity of the material in 4 V region becomes more obvious, the structure of the samples become more stable and it behaves optimal electrochemical properties as the material is heat treated at 850 °C. When it is used as cathode active material in a lithium battery, it delivers high initial capacity of 134.5 mAh g−1 (corresponding to 91.7% of the theoretical capacity), and high rate discharge capability, e.g., 133.4, 120.6, 111.4, 103.2 and 99.3 mAh g−1 as discharged at 0.5, 1, 5, 10 and 15 C (1 C = 148 mA g−1)-rates, respectively. It also shows satisfactory capacity retention even at high rate of 5 C, which is about 99.83% of the capacity retention per cycle.  相似文献   

8.
Current collectors are typically electrochemically inactive in lithium ion batteries. However, they might affect the whole cell performance once they are thermally treated during battery assembly procedure. The goal of this study is to investigate the heat treatment effect of Ni foam current collectors on the electrochemical performance in lithium ion batteries. Ni foams were thermally treated at different temperatures in air, and they were characterized in terms of morphology, structure and electrochemical performance in a half cell. SEM images showed that Ni foam surface became coarse with an increase of the heating temperature. Thermally treated Ni foams below 200 °C had negligible capacity of about 0.025 mAh, but above 300 °C showed certain capacity up to 3.13 mAh at 30th cycles due to the oxide layer formed by the thermal oxidation of the Ni foam. The results demonstrate that the thermal treatment of Ni foam current collector promotes the gradual oxidation on the Ni foam surface with nonnegligible capacity contribution.  相似文献   

9.
Working fluids for high-temperature organic Rankine cycles   总被引:1,自引:0,他引:1  
Alkanes, aromates and linear siloxanes are considered as working fluids for high-temperature organic Rankine cycles (ORCs). Case studies are performed using the molecular based equations of state BACKONE and PC-SAFT. First, “isolated” ORC processes with maximum temperatures of 250 °C and 300 °C are studied at sub- or supercritical maximum pressures. With internal heat recovery, the thermal efficiencies ηth averaged over all substances amount to about 70% of the Carnot efficiency and increase with the critical temperature. Second, we include a pinch analysis for the heat transfer from the heat carrier to the ORC working fluid by an external heat exchanger (EHE). The question is for the least heat capacity flow rates of the heat carrier required for 1 MW net power output. For the heat carrier inlet temperatures of 280 °C and 350 °C are considered. Rankings based on the thermal efficiency of the ORC and on the heat capacity flow rates of the heat carrier as well as on the volume and the heat flow rates show cyclopentane to be the best working fluid for all cases studied.  相似文献   

10.
The thermal stability of electrochemically lithiated disordered carbon with a poly(vinylidene difluoride) binder and 1 mol dm−3 LiPF6 dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) was investigated by differential scanning calorimetry (DSC) using a hermetically sealed pan. The disordered carbon used was prepared by pyrolyzing peanut shells with porogen at temperatures above 500 °C. The disordered carbon gave much larger charge and discharge capacities than graphite when a weight ratio of porogen to peanut shells was set at 5. In DSC curves, several exothermic peaks were observed at temperatures ranging from 120 to 310 °C. This behavior was similar to that for electrochemically lithiated graphite, except for an exothermic peak at around 250 °C. However, the lithiated disordered carbon had a higher heat value, which was evaluated by integrating a DSC curve, compared to lithiated graphite. The heat values increased with an increase in accumulated irreversible capacities. These results suggest that heat generation at elevated temperatures should increase as an amount of irreversibly trapped lithium-ion increases. On the other hand, heat values per reversible capacities for disordered carbon, which showed larger capacities than graphite, were almost comparable to that for graphite. These results indicate that several types of disordered carbon showed larger capacity than graphite, while their thermal stability was lowered accordingly.  相似文献   

11.
One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. In a membrane reactor process, the thermal energy needed for the endothermic hydrocarbon reforming may be provided by combustion of the membrane reject gas. The energy efficiency of the overall hydrogen generation is maximized by controlling the hydrogen product yield such that the heat value of the membrane reject gas is sufficient to provide all of the heat necessary for the integrated process. Optimization of the system temperature, pressure and operating parameters such as net hydrogen recovery is necessary to realize an efficient integrated membrane reformer suitable for compact portable hydrogen generation. This paper presents results of theoretical model simulations of the integrated membrane reformer concept elucidating the effect of operating parameters on the extent of fuel conversion to hydrogen and hydrogen product yield. Model simulations indicate that the net possible hydrogen product yield is strongly influenced by the efficiency of heat recovery from the combustion of membrane reject gas and from the hot exhaust gases. When butane is used as a fuel, a net hydrogen recovery of 68% of that stoichiometrically possible may be achieved with membrane reformer operation at 600 °C (873 K) temperature and 100 psig (0.791 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered. Operation at a greater pressure or temperature provides a marginal improvement in the performance whereas operation at a significantly lower temperature or pressure will not be able to achieve the optimal hydrogen yield. Slightly higher, up to 76%, net hydrogen recovery is possible when methanol is used as a fuel due to the lower heat requirement for methanol reforming reaction, with membrane reformer operation at 600 °C (873 K) temperature and 150 psig (1.136 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered.  相似文献   

12.
Experimental and theoretical investigations on the entropy generation, exergy loss of a horizontal concentric micro-fin tube heat exchanger are presented. The experiments setup are designed and constructed for the measured data by using hot water and cold water as working fluids. The micro-fin tube is fabricated from the copper tube with an inner diameter of 8.92 mm. The experiments are performed for the hot and cold water mass flow rates in the range of 0.02-0.10 kg/s. The inlet hot water and inlet cold water temperatures are between 40 and 50 °C, and between 15 and 20 °C, respectively. The effects of relevant parameters on the entropy generation, and exergy loss are discussed. A central finite difference method is employed to solve the model for obtaining temperature distribution, entropy generation, and exergy loss of the micro-fin tube heat exchanger. The predicted results obtained from the model are verified by comparing with the present measured data. Reasonable agreement is obtained from the comparison between predicted results and those from the measured data.  相似文献   

13.
Effects of crystallization on the high-temperature mechanical properties of a newly developed silicate-based glass sealant (GC-9) are investigated for use in planar solid oxide fuel cell (pSOFC). The aged, crystallized GC-9 glass is produced by heat treatment of the original GC-9 glass at 900 °C for 3 h. Not only crystalline phases are formed but the residual glass is also changed in the aged GC-9 glass after the heat treatment. Mechanical properties of the aged GC-9 glass are determined by four-point bending technique at temperature from 25 °C to 750 °C. The glass transition temperature of the given glass is reduced but the softening temperature is increased by such a crystallization heat treatment. The aged GC-9 glass exhibits a greater flexural strength and Young's modulus than the non-aged one at temperature below 650 °C due to the existence of crystalline phases. At temperature of 700 °C and 750 °C, a greater extent of stress relaxation is found in the aged GC-9 glass such that its strength and stiffness are much lower than those of the non-aged one. The changes in the thermal and mechanical properties through the given aging treatment are favorable for application of the GC-9 glass sealant in pSOFC.  相似文献   

14.
Molten salts have better thermal properties than synthetic mineral oil, and hence they can be directly used as heat transfer fluids in solar power plants, but in practice their direct applications as heat transfer fluids are constrained due to their high freezing temperature points. In this paper, a class of ternary nitrate salt mixtures consisting of 50-80 wt% KNO3, 0-25 wt% LiNO3 and 10-45 wt% Ca(NO3)2 were processed and tested. Experimental results indicated that some mixtures within this range exhibited excellent thermal properties, such as a low melting point (<100 °C), robust reliability, high-temperature stability (upto 500 °C) and a low viscosity (e.g.,<5 cP at 190 °C). Apart from these desirable thermo-physical properties, the manufacturing cost of these novel inorganic salts HTFs (Heat Transfer Fluids) is considerably lower than those of the existing commercial heat transfer fluids (HTFs).  相似文献   

15.
Details of theoretical and experimental studies of the change in vacuum pressure within a vacuum glazing after extreme thermal cycling are presented. The vacuum glazing was fabricated at low temperature using an indium-copper-indium edge seal. It comprised two 4 mm thick 0.4 m by 0.4 m glass panes with low-emittance coatings separated by an array of stainless steel support pillars spaced at 25 mm with a diameter of 0.4 mm and a height of 0.15 mm. Thermal cycling tests were undertaken in which the air temperature on one side of the sample was taken from −30 °C to +50 °C and back to −30 °C 15 times while maintaining an air temperature of 22 °C on the other side. After this test procedure, it was found that the glass to glass heat conductance at the centre glazing area had increased by 10.1% from which the vacuum pressure within the evacuated space was determined to have increased from the negligible level of less than 0.1 Pa to 0.16 Pa using the model of Corrucini. Previous research has shown that if the vacuum pressure is less than 0.1 Pa, the effect of conduction through the residual gas on the total glazing heat transfer is negligible. The degradation of vacuum level determined was corroborated by the change in glass surface temperatures.  相似文献   

16.
In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO4/graphite cells and shown to be in great agreement.  相似文献   

17.
As a phase change material (PCM), acetamide (AC) can be a potential candidate for energy storage application in the active solar systems. Its utilization is however hampered by poor thermal conductivity. In this work, AC/expanded graphite (EG) composite PCM with 10 wt% (mass fraction) EG as the effective heat transfer promoter was prepared; its thermal properties were studied and compared with those of pure AC. Transient hot-wire tests showed that the addition of 10 wt% EG led to about five-fold increase in thermal conductivity. Investigations using a differential scanning calorimeter revealed that the melting/freezing points shifted from 66.95/42.46 °C for pure AC to 65.91/65.52 °C for AC/EG composite, and the latent heat decreased from 194.92 to 163.71 kJ kg−1. In addition, heat storage and retrieval tests in a latent thermal energy storage unit showed that the heat storage and retrieval durations were reduced by 45% and 78%, respectively. Further numerical investigations demonstrated that the less improvement in heat transfer rate during the storage process could be attributed to the weakened natural convection in liquid (melted) AC because of the presence of EG.  相似文献   

18.
Subarna Maiti 《Solar Energy》2011,85(9):1805-1816
The present study was carried out to take advantage of the enhanced solar insolation in V-trough while limiting the temperature of the photovoltaic (PV) module at around the maximum (ca. 65 °C) observed for conventional usage without any concentration. Paraffin wax of 56-58 °C melting range was chosen as phase change material (PCM) and incorporated at the rear of the module to absorb the excess heat. The problem of low thermal conductivity of the wax was solved with the help of packed metal turnings wherein the wax resided. Two sets of experiments were performed indoor and outdoor. Employing a 0.06 m thick bed of the PCM matrix, the module temperature in the indoor experiment could be maintained at 65-68 °C for 3 h whereas in its absence the temperature rose beyond 90 °C within 15 min. In outdoor studies, the module temperature in V-trough could be reduced from 78 °C to 62 °C with the PCM assembly and operation could be sustained throughout the day. Using the V-trough PV-PCM system, the output power over the day could be enhanced 1.55 times with self regulation of temperature. The molten wax formed during operation re-solidified during the evening and night and could be re-used. A significant finding was the safe operation of the module even under low wind velocity conditions without sacrificing operational simplicity.  相似文献   

19.
An all-solid sodium/sulfur battery using poly (ethylene oxide) (PEO) polymer electrolyte are prepared and tested at 90 °C. Each battery is composed of a solid sulfur electrode, a sodium metal electrode, and a solid PEO polymer electrolyte. During the first discharge, the battery shows plateau potentials at 2.27 and at 1.76 V. The first discharge capacity is 505 mAh g−1 sulfur at 90 °C. The capacity drastically decreases by repeated on charge–discharge cycling but remains at 166 mAh g−1 sulfur after 10 cycles. The latter value is higher than that reported for a Na/poly (vinylidene difluoride)/S battery at room temperature.  相似文献   

20.
Salinity-gradient solar ponds can collect and store solar heat at temperatures up to 80 °C. As a result, these water bodies act as a renewable source of low grade heat which can be utilized for heating and power generation applications. In this paper, design and test result of the combined system of thermosyphon and thermoelectric modules (TTMs) for the generation of electricity from low grade thermal sources like solar pond is discussed. In solar ponds, temperature difference in the range 40-60 °C is available between the lower convective zone (LCZ) and the upper convective zone (UCZ) which can be applied across the hot and cold surfaces of the thermoelectric modules to make it work as a power generator. The designed system utilizes gravity assisted thermosyphon to transfer heat from the hot bottom to the cold top of the solar pond. Thermoelectric cells (TECs) are attached to the top end of the thermosyphon which lies in the UCZ thereby maintaining differential temperature across them. A laboratory scale model based on the proposed combination of thermosyphon and thermoelectric cells was fabricated and tested under the temperature differences that exist in the solar ponds. Result outcomes from the TTM prototype have indicated significant prospects of such system for power generation from low grade heat sources particularly for remote area power supply. A potential advantage of such a system is its ability to continue to provide useful power output at night time or on cloudy days because of the thermal storage capability of the solar pond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号