首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A two-dimensional, transient, multi-phase, multi-component, and non-isothermal model has been developed to solve the heat and mass transport in a passive and semi passive liquid-feed direct methanol fuel cell (DMFC). A semi passive DMFC uses channel at the cathode side to facilitate the oxidant transport. The transient characteristics of the temperature, methanol concentration, methanol crossover, useful current density and methanol evaporation are investigated. The results indicate that the temperature in the fuel cell increases during operation as much as 10 °C, due to the heat generation by internal phase change and the electrochemical reactions. However, it is revealed that the temperature distribution is nearly uniform at any time through all porous layers including the fuel cell and fuel delivery system. The effect of using an active feeding system in the cathode and passive methanol feeding in the anode (semi passive system) on the performance of a fuel cell is also studied. The active oxidant feeding to the cathode catalyst layer in the semi passive cell improved the fuel cell performance compared to that in a passive one. However, in general, the performance of passive cell is better than that in a semi passive one because of more temperature increase in the passive system.  相似文献   

2.
A two-dimensional two-phase thermal model is presented for direct methanol fuel cells (DMFC), in which the fuel and oxidant are fed in a passive manner. The inherently coupled heat and mass transport, along with the electrochemical reactions occurring in the passive DMFC is modeled based on the unsaturated flow theory in porous media. The model is solved numerically using a home-written computer code to investigate the effects of various operating and geometric design parameters, including methanol concentration as well as the open ratio and channel and rib width of the current collectors, on cell performance. The numerical results show that the cell performance increases with increasing methanol concentration from 1.0 to 4.0 M, due primarily to the increased operating temperature resulting from the exothermic reaction between the permeated methanol and oxygen on the cathode and the increased mass transfer rate of methanol. It is also shown that the cell performance upgrades with increasing the open ratio and with decreasing the rib width as the result of the increased mass transfer rate on both the anode and cathode.  相似文献   

3.
In this work, an anode flow field that allows a direct methanol fuel cell (DMFC) to operate with highly concentrated methanol is developed and tested. The basic idea of this flow field design is to vaporize methanol solution in the flow field by utilizing the heat generated from the fuel cell so that the methanol concentration in the anode catalyst layer can be controlled to an appropriate level. The flow field is composed of two parallel flow channel plates, separated with a gap. The upper plate with a grooved serpentine flow channel is to vaporize a highly concentrated methanol solution to ensure the fuel to be completely vaporized before it enters the gap, while the lower plate, perforated to form a serpentine flow channel and located between the gap and the membrane electrode assembly (MEA), is to uniformly distribute the fuel onto the anode surface of the MEA. The test results show that this unique flow field design enables the DMFC operating with 16.0-M methanol to yield a power output similar to that with the conventional flow field design with 2.0-M methanol, significantly increasing the specific energy of the DMFC system. Finally, the effects of methanol solution flow rates and operating temperature on cell performance are investigated.  相似文献   

4.
A novel approach has been proposed to improve the water management of a passive direct methanol fuel cell (DMFC) fed with neat methanol without increasing its volume or weight. By adopting perforated covers with different open ratios at the cathode, the water management has been significantly improved in a DMFC fed with neat methanol. An optimized cathode open ratio could ensure both the sufficient supply of oxygen and low water loss. While changing the open ratio of anode vaporizer can adjust the methanol crossover rate in a DMFC. Furthermore, the gas mixing layer, added between the anode vaporizer and the anode current collector to increase the mass transfer resistance, can improve the cell performance, decrease the methanol crossover, and increase the fuel efficiency. For the case of a DMFC fed with neat methanol, an anode vaporizer with the open ratio of 12% and a cathode open ratio of 20% produced the highest peak power density, 22.7 mW cm−2, and high fuel efficiency, 70.1%, at room temperature of 25 ± 1 °C and ambient humidity of 25-50%.  相似文献   

5.
Chao Xu 《Journal of power sources》2010,195(20):7011-9855
A two-dimensional, two-phase, non-isothermal model using the multi-fluid approach was developed for a passive vapor-feed direct methanol fuel cell (DMFC). The vapor generation through a membrane vaporizer and the vapor transport through a hydrophobic vapor transport layer were both considered in the model. The evaporation/condensation of methanol and water in the diffusion layers and catalyst layers was formulated considering non-equilibrium condition between phases. With this model, the mass transport in the passive vapor-feed DMFC, as well as the effects of various operating parameters and cell configurations on the mass transport and cell performance, were numerically investigated. The results showed that the passive vapor-feed DMFC supplied with concentrated methanol solutions or neat methanol can yield a similar performance with the liquid-feed DMFC fed with much diluted methanol solutions, while also showing a higher system energy density. It was also shown that the mass transport and cell performance of the passive vapor-feed DMFC depend highly on both the open area ratio of the vaporizer and the methanol concentration in the tank.  相似文献   

6.
The effect of anode current collector on the performance of passive direct methanol fuel cell (DMFC) was investigated in this paper. The results revealed that the anode of passive DMFC with perforated current collector was poor at removing the produced CO2 bubbles that blocked the access of fuel to the active sites and thus degraded the cell performance. Moreover, the performances of the passive DMFCs with different parallel current collectors and different methanol concentrations at different temperatures were also tested and compared. The results indicated that the anode parallel current collector with a larger open ratio exhibited the best performance at higher temperatures and lower methanol solution concentrations due to enhanced mass transfer of methanol from the methanol solution reservoir to the gas diffusion layer. However, the passive DMFC with a smaller open ratio of the parallel current collector exhibited the best performance at lower temperatures and higher methanol solution concentrations due to the lower methanol crossover rate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an investigation concerning the effects of operating conditions on the performance of a passive direct methanol fuel cell (DMFC). A self-developed porous metal fiber sintered plate (PMFSP) is used as the methanol barrier between the fuel reservoir and current collector at the anode in order to alleviate the effect of methanol crossover. The effectiveness of using this method is validated. A series of operating conditions such as operating orientation, methanol concentration, ambient temperature, forced air convection and dynamic load are evaluated. Results show that the use of a PMFSP promotes a higher cell performance during vertical operation than horizontal orientation. The effect of methanol concentration depends on the PMFSP porosity. A relatively lower porosity is favorable for high-concentration operation. The cell performance gets improved when increasing the ambient temperature and adopting forced air supply at the cathode. Compared with the traditional structure, the use of a PMFSP makes the fuel cell insensitive to the change of blowing intensity. In addition, the dynamic characteristics of the PMFSP-based passive DMFC are also reported.  相似文献   

8.
This paper describes a high-power density, silicon-based micro-scale direct methanol fuel cell (DMFC), under development at Carnegie Mellon. Major issues in the DMFC design include the water management and energy-efficient micro fluidic sub-systems. The air flow and the methanol circulation are both at a natural draft, while a passive liquid–gas separator removes CO2 from the methanol chamber. An effective approach for maximizing the DMFC energy density, pumping the excess water back to the anode, is illustrated.  相似文献   

9.
《Journal of power sources》2006,155(2):291-296
The effect of the anode flow field design on the performance of an in-house fabricated micro direct methanol fuel cell (μDMFC) with an active area 1.0 cm × 1.0 cm was investigated experimentally. Single serpentine and parallel flow fields consisting of micro channels were tested. The experimental results indicated that the serpentine flow field exhibited significantly higher cell voltages than did the parallel flow field, particularly at high current densities. The study of the effect of channel depth of the serpentine flow field suggested that there exists an optimal channel depth for the same channel width and the same open ratio when the same methanol flow rate is supplied; either shallower or deeper channels will lead to a reduction in the cell performance. Finally, it was demonstrated that performance of the μDMFC with the reactants fed by an active means was insensitive to the cell orientations, which is different from conventional DMFCs with larger flow channels reported in the literature.  相似文献   

10.
A microfluidic fuel supply concept for passive and portable direct methanol fuel cells (DMFCs) that operates in all spatial orientations is presented. The concept has been proven by fabricating and testing a passive DMFC prototype. Methanol transport at the anode is propelled by the surface energy of deformed carbon dioxide bubbles, generated as a reaction product during DMFC operation. The experimental study reveals that in any orientation, the proposed pumping mechanism transports at least 3.5 times more methanol to the reactive area of the DMFC than the stoichiometry of the methanol oxidation would require to sustain DMFC operation. Additionally, the flow rates closely follow the applied electric load; hence the pumping mechanism is self-regulating. Oxygen is supplied to the cathode by diffusion and the reaction product water is transported out of the fuel cell along a continuous capillary pressure gradient. Results are presented that demonstrate the continuous passive operation for more than 40 h at ambient temperature with a power output of p = 4 mW cm−2 in the preferred vertical orientation and of p = 3.2 mW cm−2 in the least favorable horizontal orientation with the anode facing downwards.  相似文献   

11.
Passive direct methanol fuel cells (DMFCs) are under development for use in portable applications because of their enhanced energy density in comparison with other fuel cell types. The most significant obstacles for DMFC development are methanol and water crossover because methanol diffuses through the membrane generating heat but no power. The presence of a large amount of water floods the cathode and reduces cell performance. The present study was carried out to understand the performance of passive DMFCs, focused on the water crossover through the membrane from the anode to the cathode side. The water crossover behaviour in passive DMFCs was studied analytically with the results of a developed model for passive DMFCs. The model was validated with an in‐house designed passive DMFC. The effect of methanol concentration, membrane thickness, gas diffusion layer material and thickness and catalyst loading on fuel cell performance and water crossover is presented. Water crossover was lowered with reduction on methanol concentration, reduction of membrane thickness and increase on anode diffusion layer thickness and anode and cathode catalyst layer thickness. It was found that these conditions also reduced methanol crossover rate. A membrane electrode assembly was proposed to achieve low methanol and water crossover and high power density, operating at high methanol concentrations. The results presented provide very useful and actual information for future passive DMFC systems using high concentration or pure methanol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Passive direct methanol fuel cells (DMFCs) are promising energy sources for portable electronic devices. Different from DMFCs with active fuel feeding systems, passive DMFCs with nearly stagnant fuel and air tend to bear comparatively less power densities. In the aspect of cell performance optimization, there could be significant differences in cell design parameters between active and passive DMFCs. A numerical model that could simulate methanol permeation and the pertinent mixed potential effect in a DMFC was used to help seek for possibilities of optimizing the cell performance of a passive DMFC by studying impacts from variations of cell design. The subjects studied include catalysis of the anode and the cathode, membrane thickness, membrane conductivity, and methanol concentration. In contrast to general understandings on a DMFC with active fuel and reactant gas, our simulation results for a passive DMFC used in this study indicated that the catalysis of the cathode appeared to be the most important parameter. The maximum power density was predicted to improve by 38% with the thickness of the cathodic catalyst layer doubled and by 36% with the catalyst loading doubled. The improvement on cell performance would multiply if we simultaneously adopted the most optimal parameters during the simulation study.  相似文献   

13.
We present controlled experiments on a miniature direct methanol fuel cell (DMFC) to study the effects of methanol flow rate, current density, and void fraction on pressure drop across the DMFC anode. We also present an experimental technique to measure void fraction, liquid slug length, and velocity of the two-phase slug flow exiting the DMFC. For our channel geometry in which the diameter of the largest inscribed sphere (a) is 500 μm, pressure drop scales with the number of gas slugs in the channel, surface tension, and a. This scaling demonstrates the importance of capillary forces in determining the hydrodynamic characteristics of the DMFC anode. This work is aimed at aiding the design of fuel pumps and anode flow channels for miniature DMFC systems.  相似文献   

14.
This paper is presented to investigate operational characteristics of a direct methanol fuel cell (DMFC) stack with regard to fuel and energy efficiency, including its performance and stability under various operating conditions. Fuel efficiency of the DMFC stack is strongly dependent on fuel concentration, working temperature, current density, and anode channel configuration in the bipolar plates and noticeably increases due to the reduced methanol crossover through the membrane, as the current density increases and the methanol concentration, anode channel depth, and temperature decreases. It is, however, revealed that the energy efficiency of the DMFC stack is not always improved with increased fuel efficiency, since the reduced methanol crossover does not always indicate an increase in the power of the DMFC stack. Further, a lower methanol concentration and temperature sacrifice the power and operational stability of the stack with the large difference of cell voltages, even though the stack shows more than 90% of fuel efficiency in this operating condition. The energy efficiency is therefore a more important characteristic to find optimal operating conditions in the DMFC stack than fuel efficiency based on the methanol utilization and crossover, since it considers both fuel efficiency and cell electrical power. These efforts may contribute to commercialization of the highly efficient DMFC system, through reduction of the loss of energy and fuel.  相似文献   

15.
The direct methanol fuel cell presents several interesting scientific and engineering problems. There are many engineering issues regarding eventual application concerning cell materials, feed and oxidant requirements, fuel utilisation and recovery, scale up, etc. This paper looks at several of these issues starting from the point of current, typical, cell performance. A small-scale flow cell and a large scale cell, both with a parallel channel flow bed design, are used. The structure of the direct methanol fuel cell (DMFC) is a composite of two porous electrocatalytic electrodes; Pt–Ru–C catalyst anode and Pt–C catalyst cathode, on either side of a solid polymer electrolyte (SPE) membrane. Flow visualisation on small scale and intermediate scale (100 cm2) cells has been used in the design of a new large-scale cell of 225 cm2 active area. We discuss several important engineering factors in the successful design of large scale DMFCs including the use of vapour and liquid feeds, thermal management, gas management, methanol fuel management, hydrodynamics and mass transport.  相似文献   

16.
A passive vapor-feed direct methanol fuel cell (DMFC) was experimentally investigated to improve its water management and cell performance when neat methanol was directly used. The effects of different water management approaches, including the addition of a water management layer (WML) and a hydrophobic air filter layer (AFL), and the use of thinner membrane on the cell performance, internal resistance, and fuel efficiency were investigated. The transient discharging behavior and long-term stability of the passive vapor-feed DMFC with the optimized water management were also studied. The results showed that by adding a WML and an AFL, or thinning the membrane thickness, the water management capability can be highly improved, not only enhancing the water recovery from the cathode to the anode, leading to a lower internal resistance and better cell performance, but also curbing the methanol crossover, increasing the fuel efficiency. It is also seen from the long-term constant-voltage test that the discharged current varied with the methanol concentration in the tank and the ambient temperature, while no evident permanent performance degradation was encountered after the 150 h test.  相似文献   

17.
To realize lightweight design of the fuel cell system is a critical issue before it is put into practical use. The printed-circuit-board (PCB) technology can be potentially used for production of current collectors or flow distributors. This study develops prototypes of a single passive air-breathing direct methanol fuel cell (DMFC) and also an 8-cell mono-polar DMFC stack based on PCB current collectors. The effects of diverse structural and operational factors on the cell performance are explored. Results show that the methanol concentration of 6 M promotes a higher cell performance with a peak power density of 18.3 mW cm−2. The combination of current collectors using a relatively higher anode open ratio and inversely a lower cathode open ratio helps enhance the cell performance. Dynamic tests are also conducted to reveal transient behaviors and its dependence on the operating conditions. To validate the real working status of the DMFC stack, it is coupled with an LED lightening system. The performance of this hybrid system is also reported in this study.  相似文献   

18.
A new single passive direct methanol fuel cell (DMFC) supplied with pure methanol is designed, assembled and tested using a pervaporation membrane (PM) to control the methanol transport. The effect of the PM size on the fuel cell performances and the constant current discharge of the fuel cell with one-fueling are studied. The results show that the fuel cell with PM 9 cm2 can yield a maximum power density of about 21 mW cm−2, and a stable performances at a discharge current of 100 mA can last about 45 h. Compared with DMFC supplied with 3 M methanol solution, the energy density provided by this new DMFC has increased about 6 times.  相似文献   

19.
Passive micro direct methanol fuel cell (μDMFC) which operates based on fuel diffusion is preferred for portable applications for its structural simplicity. In this work, we have systematically investigated multiple variables including the hot-press conditions, current collector channel patterns, current collector open ratios, and their effects on the performance for passive μDMFC by experiments and simulations. Results indicate that vertical stripe pattern (VSP) is preferred for both anodes and cathodes due to the upward reaction products drift by natural convection. Open ratio of 45.6% and 35.8% are found to yield the best performance for anode and cathode, respectively. In addition, the external environmental conditions of vibration frequency, cell orientation, environmental temperature and atmospheric pressure are all discussed in detail in this work. The optimized fabrication, assembly and operation parameters shed light on the design considerations necessary for the wide adaptation of high-performance and durable passive μDMFC for portable applications.  相似文献   

20.
A mathematical model is developed to simulate the fundamental transport phenomena in a passive direct methanol fuel cell (DMFC) operating with neat methanol. The neat methanol operation is realized by using a ‘pervaporation’ membrane that allows the methanol concentration from the neat methanol in the fuel reservoir to be declined to an appropriate level in the anode catalyst layer (CL). The water required by the methanol oxidation reaction on the anode is passively obtained by diffusion from the cathode through the membrane. The numerical results indicate that the methanol delivery rate from the fuel reservoir to the anode CL is predominately controlled by the pervaporation process. It is also found that under the neat methanol operating condition, water distribution across the membrane electrode assembly is greatly influenced by the membrane thickness, the cathode design, the operating temperature, and the ambient relative humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号