首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton-conducting composite membranes based on H+-form sulfated β-cyclodextrin (sb-CD) in a Nafion matrix are prepared via the solution-casting method and their methanol permeabilities, proton conductivities, proton diffusion coefficients and cell performances are measured. The methanol permeabilities of the composite membranes increase very slightly with increases in their sb-CD content. As a result of adding sb-CD with its many sulfonic acid groups into the Nafion matrix, the proton conductivities of the composite membranes increase with increases in their sb-CD content. The methanol permeability and proton conductivity results are used to show that the best selectivity of the membranes is that of the NC5 membrane (‘NCx’ denotes a Nafion/sb-CD composite membrane containing x wt.% sb-CD). The proton diffusion coefficients are measured with 1H pulsed field gradient nuclear magnetic resonance (PFG-NMR) and found to increase with increase in the sb-CD content in the order NC5 > NC3 > NC1 > NC0. Thus the presence of sb-CD in the Nafion membranes increases the proton diffusion coefficients as well as the proton conductivities, ionic cluster size, water uptakes and the ion-exchange capacities (IECs). A maximum power density of 58 mW cm−2 is obtained for the NC5 membrane. The combination of these effects should lead to an improvement in the performance of direct methanol fuel cells prepared with Nafion/sb-CD composite membranes.  相似文献   

2.
This study examined methanol crossover through PtRu/Nafion composite membranes for the direct methanol fuel cell. For this purpose, 0.03, 0.05 and 0.10 wt% PtRu/Nafion composite membranes were fabricated using a solution impregnation method. The composite membrane was characterized by inductively coupled plasma-mass spectroscopy and thermo-gravimetric analysis. The methanol permeability and proton conductivity of the composite membranes were measured by gas chromatography and impedance spectroscopy, respectively. In addition, the composite membrane performance was evaluated using a single cell test. The proton conductivity of the composite membrane decreased with increasing number of PtRu particles embedded in the pure Nafion membrane, while the level of methanol permeation was retarded. From the results of the single cell test, the maximum performance of the composite membrane was approximately 27% and 31% higher than that of the pure Nafion membrane at an operating temperature of 30 and 45 °C, respectively. The optimum loading of PtRu was determined to be 0.05 wt% PtRu/Nafion composite membrane.The PtRu particles embedded in the Nafion membrane act as a barrier against methanol crossover by the chemical oxidation of methanol on embedded PtRu particles and by reducing the proton conduction pathway.  相似文献   

3.
Composite membranes consisting of polyvinylidene fluoride (PVdF) and Nafion have been prepared by impregnating various amounts of Nafion (0.3–0.5 g) into the pores of electrospun PVdF (5 cm × 5 cm) and characterized by scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and proton conductivity measurements. The characterization data suggest that the unique three-dimensional network structure of the electrospun PVdF membrane with fully interconnected fibers is maintained in the composite membranes, offering adequate mechanical properties. Although the composite membranes exhibit lower proton conductivity than Nafion 115, the composite membrane with 0.4 g Nafion exhibits better performance than Nafion 115 in direct methanol fuel cell (DMFC) due to smaller thickness and suppressed methanol crossover from the anode to the cathode through the membrane. With the composite membranes, the cell performance increases on going from 0.3 to 0.4 g Nafion and then decreases on going to 0.5 g Nafion due to the changes in proton conductivity.  相似文献   

4.
We report a composite membrane based on poly(vinyl alcohol) and sulfated β-cyclodextrin in this paper. TGA and SEM tests provide direct evidence of the thermal stability and the uniform structure of the composite membranes. The performances of the composite membranes are investigated in terms of swelling behavior, methanol permeability and proton conductivity as function of sulfated β-cyclodextrin content. We find that the introduction of sulfated β-cyclodextrin can reduce water uptake. The temperature dependence of proton conductivity reveals that the proton conducting activation energy of the composite membranes is similar to that of Nafion 115, in other words, both the vehicle and Grotthus mechanisms are assumed to be responsible for the composite membranes’ proton transfer. Methanol permeability decreases as the methanol feed concentration increases from 2 M to 20 M. Both proton conductivity and methanol permeability increases with increasing sulfated β-cyclodextrin. The selectivity of the composite membranes defined as the ratio of proton conductivity to methanol permeability obtains the maximum of 1.710 × 104 S s cm−3 at the composition of 17 wt.% sulfated β-cyclodextrin. The MEAs fabricate with these membranes are tested, no distinct change occurred to the composite membranes after the MEAs operating for 288 h. These data indicates the chemical and electrochemical stability of the membranes and their potential application in direct methanol fuel cells.  相似文献   

5.
Composite membranes based on Sulfonated poly(ether ether ketone) (SPEEK) and sulfonated organically modified Si-SBA-15 (S-SBA-15) were investigated with the purpose of increasing the proton conductivity. The novelty of the composite membranes was attributed to two special structures and different ion exchange capacities (IEC) of S-SBA-15 fillers, which were embedded in membranes. The typical hexagonal channels array of S-SBA-15 was confirmed by XRD and TEM. The regular vermiculate and amorphous structures of the inorganic fillers were proved by SEM. Composite membranes were prepared through common solvent casting method. SEM images indicated that the inorganic filler with regular structure dispersed homogeneously in the composite membranes, but the amorphous filler caused an agglomeration phenomenon at the same loading content. The composite membranes exhibited good thermal stability, enhanced water uptake and proton conductivity. The proton conductivity of the composite membranes with low IEC filler was higher than the composite membranes with high IEC filler at the same loading content. The highest proton conductivity value of 0.156 S cm−1 was obtained for the composite membrane containing 5 wt.% S-SBA-15 with the IEC of 1.41 mequiv g−1 at 80 °C. This composite membrane also showed other promising properties such as good thermal and mechanical stability which exceeded the other composite membranes with different loading contents.  相似文献   

6.
Crosslinked organic-inorganic hybrid membranes are prepared from hydroxyl-functionalized sulfonated poly(ether ether ketone) (SPEEK) and various amounts of silica with the aims to improve dimensional stability and methanol resistance. The partially hydroxyl-functionalized SPEEK is prepared by the reduction of some benzophenone moieties of SPEEK into the corresponding benzhydrol moieties which is then reacted with (3-isocyanatopropyl)triethoxysilane (ICPTES) to get a side chained polymer bearing triethoxysilyl groups. These groups are subsequently co-hydrolyzed with tetraethoxysilane (TEOS) and allow the membrane to form a crosslinked network via a sol-gel process. The obtained hybrid membranes with covalent bonds between organic and inorganic phases exhibit much lower methanol swelling ratio and water uptake. With the increase of silica content, the methanol permeability coefficient of the hybrid membranes decreases at first and then increased. At silica content of about 6 wt.%, the methanol permeability coefficient reaches a minimum of 7.15 × 10−7 cm2 s−1, a 5-fold decrease compared with that of the pristine SPEEK. Despite the fact that the proton conductivity is decreased to some extent as a result of introduction of the silica, the hybrid membranes with silica content of 4-8 wt.% shows higher selectivity than Nafion117.  相似文献   

7.
Novel 4,4′-dihydroxy-α-methylstilbene (HMS)-based sulfonated poly(arylene ether sulfone) with sulfonic acid composition ranging from 10 to 40 mol% was synthesized via nucleophilic step polymerization of 4,4′-dihydroxy-α-methylstilbene, 4,4′-dichloro-3,3′-disulfonic acid diphenylsulfone and 4,4′-dichlorodiphenylsulfone and blended with silica sol to form organic/inorganic nano-composite membranes. The organic/inorganic nano-composite copolymers produced show a high glass transition temperature and thermal decomposition temperatures from 318 to 451 °C. The copolymers present appropriate toughness during the membrane process. The equilibrium water uptake and proton conductivity of the obtained organic/inorganic nano-composite membranes were measured as functions of temperature, degree of sulfonation and silica content. In general, the water uptake increased from 8 to 37 wt.%, and the proton conductivity of the organic/inorganic nano-composite membranes increased from 0.003 to 0.110 S cm−1 as the degree of sulfonation increased from 10 to 40 mol%, the silica content increased from 3 to 10 wt.%, and the temperature increased from 30 to 80 °C. The single cell performance of the 40 mol% organic/inorganic nano-composite membrane with various silica contents ranged from 11 to 13 mW cm−2 at 80 °C, and the power density was higher than Nafion® 117. Including the thermal properties, swelling, conductivity and single cell performance, the nano-composite membranes are able to satisfy the requirements of proton exchange membranes for direct methanol fuel cells (DMFC).  相似文献   

8.
In this study, a new type of cross-linked composite membrane is prepared and considered for its potential applications in direct methanol fuel cell. Nafion and sulfonated poly(arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) are blended and subsequently cross-linked by a Friedel-Craft reaction using the carboxylic acid groups in the SPAEK-C to achieve lower methanol permeability. The perfluoroalkyl sulfonic acid groups of Nafion act as a benign solid catalyst, which assist the cross-linking of SPAEK-C. The physical and chemical characterizations of the cross-linked composite membranes are performed by varying the contents of SPAEK-C. The c-Nafion-15% membrane exhibits appropriate water uptake (10.49-25.22%), low methanol permeability (2.57 × 10−7 cm2 s−1), and high proton conductivity (0.179 S cm−1 at 80 °C). DSC and FTIR analyze suggest the cross-linking reaction. These results show that the self-cross-linking of SPAEK-C in the Nafion membrane can effectively reduce methanol permeability while maintaining high proton conductivity.  相似文献   

9.
Studies of proton-conductive polymer membranes are vital for the future development of high-performance polymer electrolyte membrane fuel cells (PEM-FC). In particular, a method for inhibiting the volatility of water in the polymer matrix at high temperatures is a crucial issue, directly related to the operation of PEM-FC system. In this study, we focus on polymer composite membranes, which consist of commercial Nafion and mesoporous silica (MPSi) as novel inorganic additives, and investigate an improvement in the total proton conductivities and the good electrochemical stability at high temperatures. MPSi, which can be synthesized with pore sizes from 1 to 10 nm, has a wide range of potential applications because of its extraordinary properties, such as extremely large surface area, flawless surface condition and well-regulated porous structure. We found that the Nafion composites filled with MPSi have approximately 1.5 times higher proton conductivities (more than 0.1 S cm−1 at 80 °C and 95%RH) than pure Nafion and can display good temperature performance relative to pure Nafion and the particle SiO2 composite. Moreover, the conductivity of Nafion/sulfonated MPSi was the highest (0.094 S cm−1) at 40 °C and 95%RH. These are probably due to the large surface area of MPSi, which can increase the water adsorption in Nafion matrix.  相似文献   

10.
Although zeolites are introduced to decrease methanol crossover of Nafion membranes for direct methanol fuel cells (DMFCs), little is known about the effect of their intrinsic properties and the interaction with the ionomer. In this work, Nafion-Faujasite composite membranes prepared by solution casting were characterized by extensive physicochemical and electrochemical techniques. Faujasite was found to undergo severe dealumination during the membrane activation, but its structure remained intact. The zeolite interacts with Nafion probably through hydrogen bonding between Si-OH and SO3H groups, which combined with the increase of the water uptake and the water mobility, and the addition of a less conductive phase (the zeolite) leads to an optimum proton conductivity between 0.98 and 2 wt% of zeolite. Hot pressing the membranes before their assembling with the electrodes enhanced the DMFC performance by reducing the methanol crossover and the serial resistance.  相似文献   

11.
One of the major challenges for direct methanol fuel cells is the problem of methanol crossover. With the aim of solving this problem without adverse effects on the membrane conductivity, Nafion/Palladium–silica nanofiber (N/Pd–SiO2) composite membranes with various fiber loadings were prepared by a solution casting method. The silica-supported palladium nanofibers had diameters ranging from 100 nm to 200 nm and were synthesized by a facile electro-spinning method. The thermal properties, ionic exchange capacities, water uptake, proton conductivities, methanol permeabilities, chemical structures, and micro-structural morphologies were determined for the prepared membranes. It was found that the transport properties of the membranes were affected by the fiber loading. All of the composite membranes showed higher water uptake and ion exchange capacities compared to commercial Nafion 117 and proved to be thermally stable for use as proton exchange membranes. The composite membranes with optimum fiber content (3 wt%) showed an improved proton conductivity of 0.1292 S cm−1 and a reduced methanol permeability of 8.36 × 10−7 cm2 s−1. In single cell tests, it was observed that, the maximum power density measured with composite membrane is higher than those of commercial Nafion 117.  相似文献   

12.
This work investigates the characterization and performance of polyaniline and silica modified Nafion membranes. The aniline monomers are synthesized in situ to form a polyaniline film, whilst silica is embedded into the Nafion matrix by the polycondensation of tetraethylorthosilicate. The physicochemical properties are studied by means of X-ray diffraction and Fourier transform infrared techniques and show that the polyaniline layer is formed on the Nafion surface and improves the structural properties of Nafion in methanol solution. Nafion loses its crystallinity once exposed to water and ethanol, whilst the polyaniline modification allows crystallinity to be maintained under similar conditions. By contrast, the proton conductivities of polyaniline modified membranes are 3–5-fold lower than that of Nafion. On a positive note, methanol crossover is reduced by over two orders of magnitude, as verified by crossover limiting current analysis. The polyaniline modification allows the membrane to become less hydrophilic, which explains the lower proton conductivity. No major advantages are observed by embedding silica into the Nafion matrix. The performance of a membrane electrode assembly (MEA) using commercial catalysts and polyaniline modified membranes in a cell gives a peak power of 8 mW cm−2 at 20 °C with 2 M methanol and air feeding. This performance correlates to half that of MEAs using Nafion, though the membrane modification leads to a robust material that may allow operation at high methanol concentration.  相似文献   

13.
Methanol crossover through polymer electrolyte membranes represents one of the major problems to be solved in order to improve direct methanol fuel cell (DMFC) performance. With this aim, Nafion/zirconium phosphate (ZrP) composite membranes, with ZrP loading in the range 1-6 wt%, were prepared by casting from mixtures of gels of exfoliated ZrP and Nafion 1100 dispersions in dimethylformamide. These membranes were characterised by methanol permeability, swelling and proton conductivity measurements, as well as by tests in active and passive DMFCs in the temperature range 30-80 °C. Increase in filler loading results in a decrease in both methanol permeability and proton conductivity. As a consequence of the reduced conductivity the power density of active DMFCs decreases with increasing ZrP loading (from 46 to 32 mW cm−2 at 80 °C). However, due to the lower methanol permeability, the room temperature Faraday efficiency of passive DMFCs, with 20 mA cm−2 discharge current, nearly doubles when Nafion 1100 is replaced by the composite membrane containing 4 wt% ZrP.  相似文献   

14.
A series of cross-linked membranes based on SPEEK/Nafion have been prepared to improve methanol resistance and dimension stability of SPEEK membrane for the usage in the direct methanol fuel cells (DMFCs). Sulfonated diamine monomer is synthesized and used as cross-linker to improve the dispersion of Nafion in the composite membranes and decrease the negative effect of cross-linking on proton conductivity of membranes. FT-IR analysis shows that the cross-linking reaction is performed successfully. The effects of different contents of Nafion on the properties of cross-linked membranes are investigated in detail. All the cross-linked membranes show lower methanol permeability and better dimensional stability compared with the pristine SPEEK membrane. SPEEK-N30 with the 30 wt % Nafion shows a methanol permeability of 0.73 × 10−6 cm2 s−1 and a water uptake of 24.4% at 25 °C, which are lower than those of the pristine membrane. Meanwhile, the proton conductivity of SPEEK-N30 still remains at 0.041 S cm−1 at 25 °C, which is comparable to that of the pristine SPEEK membrane. All the results indicate that these cross-linked membranes based on SPEEK/Nafion show good prospect for the use as proton exchange membranes.  相似文献   

15.
Composite membranes made from Nafion ionomer with nano phosphonic acid-functionalised silica and colloidal silica were prepared and evaluated for proton exchange membrane fuel cells (PEMFCs) operating at elevated temperature and low relative humidity (RH). The phosphonic acid-functionalised silica additive obtained from a sol–gel process was well incorporated into Nafion membrane. The particle size determined using transmission electron microscope (TEM) had a narrow distribution with an average value of approximately 11 nm and a standard deviation of ±4 nm. The phosphonic acid-functionalised silica additive enhanced proton conductivity and water retention by introducing both acidic groups and porous silica. The proton conductivity of the composite membrane with the acid-functionalised silica was 0.026 S cm−1, 24% higher than that of the unmodified Nafion membrane at 85 °C and 50% RH. Compared with the Nafion membrane, the phosphonic acid-functionalised silica (10% loading level) composite membrane exhibited 60 mV higher fuel cell performance at 1 A cm−2, 95 °C and 35% RH, and 80 mV higher at 0.8 A cm−2, 120 °C and 35% RH. The fuel cell performance of composite membrane made with 6% colloidal silica without acidic group was also higher than unmodified Nafion membrane, however, its performance was lower than the acid-functionalised silica additive composite membrane.  相似文献   

16.
Synthesis and characterization of Nafion/TiO2 membranes for proton exchange membrane fuel cell (PEMFC) operating at high temperatures were investigated in this study. Nafion/TiO2 nanocomposite membranes have been prepared by in-situ sol–gel and casting methods. In the sol–gel method, preformed Nafion membranes were soaked in tetrabutylortotitanate (TBT) and methanol solution. In order to compare synthesis methods, a Nafion/TiO2 composite membrane was fabricated with 3 wt.% of TiO2 particles by the solution casting method. The structures of membranes were investigated by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDXA). Also, water uptake and proton conductivity of modified membranes were measured. Furthermore, the membranes were tested in a real PEMFC. X-Ray spectra of the composite membranes indicate the presence of TiO2 in the modified membranes. In case of the same doping level, sol–gel method produces more uniform distribution of Ti particles in Nafion/TiO2 composite membrane than the ones produced by casting method. Water uptake of Nafion/TiO2 membrane with 3 wt.% of doping level was found to be 51% higher than that of the pure Nafion membrane. EIS measurements showed that the conductivity of modified membranes decreases with increasing the amount of doped TiO2. Finally, the membrane electrode assembly (MEA) prepared from Nafion/Titania nanocomposite membrane shows the highest PEMFC performance in terms of voltage vs. current density (V–I) at high temperature (110 °C) which is the main goal of this study.  相似文献   

17.
A Nafion and polyaniline composite membrane (designated Nafion/PANI) was fabricated using an in situ chemical polymerization method. The composite membrane showed a proton conductivity that was superior to that obtained with Nafion® 112 at low humidity (e.g. RH = 60%). Water uptake measurements revealed similarities between the Nafion® 112 and Nafion/PANI membranes at different humidities. The high conductivity of the Nafion/PANI membrane at low humidity is hypothesized to be due to the existence of the extended conjugated bonds in the polyaniline; proton transfer is facilitated via the conjugated bonds in lower humidity environments allowing retention of the relatively high conductivity. Correspondingly, the performance of a single cell fuel cell containing the Nafion/PANI composite membrane is improved compared to a Nafion® 112-containing cell under low humidity conditions. This is important for portable fuel cells, which are required to operate without external humidification.  相似文献   

18.
Nafion-titanate nanotubes composite membranes prepared through casting process have been investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. The glass transition temperature and the decomposition temperature of composite membrane at dry state are higher than those of pristine Nafion membrane. Cracks have been observed in the membrane at the concentration of nanotubes above 5 wt.%. The maximum proton conductivity at 100 °C and 50% relative humidity is observed with the concentration of doped titanate nanotubes of 5 wt.%. Solid nuclear magnetic resonance spectrum is applied to qualitatively characterize the status of water inside the membrane at different temperatures. The power densities at 0.8 V for cell assembled from composite membrane containing 5 wt.% of titanate nanotubes are about 13% and 35% higher than that for plain Nafion cells under 50% relative humidity at 65 °C and 90 °C, respectively.  相似文献   

19.
By immersing Nafion membrane into dopamine aqueous solution under mild conditions, a series of modified Nafion membranes for the application in direct methanol fuel cell (DMFC) were fabricated. High resolution scanning electron microscope and Fourier transform infrared spectra characterization revealed that a dense nano-layer around 50 nm was formed and adhered tightly to Nafion surface. Small-angle X-ray scattering, wide X-ray diffractometer and positron annihilation lifetime spectroscopy analysis implied that the microstructure such as phase-separated structure and ion-cluster channel of Nafion layer was slightly changed after surface modification. The influence of modification conditions including pH value, dopamine concentration and immersing time upon membrane performance was investigated. Due to the effective reduction of methanol dissolution and enhancement of methanol diffusion resistance, the methanol crossover of the modified membranes was dramatically suppressed by about 79% from 3.14 × 10−6 to about 0.65 × 10−6 cm2 s−1. Meanwhile, the proton conductivity of the modified membranes was slightly decreased to be around 0.06 S cm−1. Consequently, the comprehensive performance of the modified membranes was improved by about five times. These results hinted the application promises of such modified Nafion membranes in DMFC.  相似文献   

20.
《Journal of power sources》2006,159(2):1015-1024
Various thiol and sultone groups were grafted onto the surface of titanate nanosheets to render organic sulfonic acid (HSO3–) functionality. The nanocomposite membranes were cast together with Nafion® using these materials as inorganic fillers. Nanocomposite membranes containing surface-sulfonated titanates showed higher proton conductivity than composite membranes containing untreated TiO2 P25 particles. They showed better mechanical and thermal stability than Nafion alone. The methanol permeability of nanocomposite membranes decreased with increasing the content of the sulfonated titanate in the nanocomposite membranes. The relative permeability of methanol through these composite membranes with 2 and 5 M methanol solutions was reduced by up to 38 and 26%, respectively, relative to pristine Nafion 115 membranes. The membrane electrode assembly using Nafion/sulfonated titanate nanocomposite membranes exhibited up to 57% higher power density than the assembly containing a pristine Nafion membrane under typical operating conditions of direct methanol fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号