首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
A novel capacitor electrode auxiliary, deoxyribonucleic acid (DNA), is applied to an electric double layer capacitor (EDLC) containing an aqueous 3.5 M NaBr electrolyte. The present electrode is composed of activated carbon (95 wt.%) and DNA (2.5 wt.%) with polytetrafluoroethylene (PTFE) as a binder (2.5 wt.%). An EDLC cell with the DNA-loading electrodes exhibits improved rate capability and discharge capacitance. An EDLC cell with DNA-free electrodes cannot discharge above a current density of 3000 mA g−1 (of the electrode), while a cell with the DNA-loading electrodes can work at least up to 6000 mA g−1. Moreover, an open-circuit potential (OCP) of the DNA-loading electrode sifts negatively with ca. 0.2 V from an OCP of the corresponding electrode without DNA. It is noteworthy that a small amount of DNA loading (2.5 wt.%) to the activated carbon electrode not only improves the rate capability but also adjusts the working potential of the electrode to a more stable region.  相似文献   

2.
Activated carbons were prepared via a pyrolysis of sucrose followed by activation in the stream of CO2 gas for 2-6 h at 900 °C to tune the pore size distribution (PSD) and increase the specific surface area (SSA). The porosity of the activated sucrose derived carbons (ASCs) has been characterized using N2 sorption measurements. Increasing activation time led to the significant increase in SSA and pore volume of ASCs, among which sucrose derived carbon with 6 h activation time (ASC-6 h) exhibited the highest SSA of 1941 m2 g−1 and the highest micropore volume of 0.87 cm3 g−1. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge cycle tests have been applied to investigate the capacitive performance of the ASC electrodes in ionic liquids (ILs) at room and elevated temperatures. The ASC-6 h electrodes in ethyl-dimethyl-propyl-ammonium bis (trifluoromethylsulfonyl) imide (EdMPNTf2N) showed specific capacitance in excess of 170 F g−1 at 60 °C, whereas the same electrodes in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) showed slightly lower capacitance but significantly better rate performance.  相似文献   

3.
Activated carbon fibers (ACFs) with super high surface area and well-developed small mesopores have been prepared by pyrolyzing polyacrylonitrile fibers and NaOH activation. Their capacitive performances at room and elevated temperatures are evaluated in electrochemical double layer capacitors (EDLCs) using ionic liquid (IL) electrolyte composed of lithium bis(trifluoromethane sulfone)imide (LiN(SO2CF3)2) and 2-oxazolidinone (C3H5NO2). The surface area of the ACF is as high as 3291 m2 g−1. The pore volume of the carbon reaches 2.162 cm3 g−1, of which 66.7% is the contribution of the small mesopores of 2-5 nm. The unique microstructures enable the ACFs to have good compatibility with the IL electrolyte. The specific capacitance reaches 187 F g−1 at room temperature with good cycling and self-discharge performances. As the temperature increases to 60 °C, the capacitance increases to 196 F g−1, and the rate capability is dramatically improved. Therefore, the ACF can be a promising electrode material for high-performance EDLCs.  相似文献   

4.
In this paper, a nickel hydroxide/activated carbon (AC) composite electrode for use in an electrochemical capacitor was prepared by a simple chemical precipitation method. The structure and morphology of nickel hydroxide/AC were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that nano-sized nickel hydroxide was loading on the surface of activated carbon. Electrochemical performance of the composite electrodes with different loading amount was studied by cyclic voltammetry and galvanostatic charge/discharge measurements. It was demonstrated that the introduction of a small amount of nickel hydroxide to activated carbon could promote the specific capacitance of a composite electrode. The composite electrodes have good electrochemical performance and high charge–discharge properties. Moreover, when the loading amount of nickel hydroxide was 6 wt.%, the composite electrode showed a high specific capacitance of 314.5 F g−1, which is 23.3% higher than pure activated carbon (255.1 F g−1). Also, the composite electrochemical capacitor exhibits a stable cyclic life in the potential range of 0–1.0 V.  相似文献   

5.
Solution spun polyacrylonitrile (PAN), PAN/multi-wall carbon nanotube (MWCNT), and PAN/single-wall carbon nanotube (SWCNT) fibers containing 5 wt.% carbon nanotubes were stabilized in air and activated using CO2 and KOH. The surface area as determined by nitrogen gas adsorption was an order of magnitude higher for KOH activated fibers as compared to the CO2 activated fibers. The specific capacitance of KOH activated PAN/SWCNT samples was as high as 250 F g−1 in 6 M KOH electrolyte. Under the comparable KOH activation conditions, PAN and PAN/SWCNT fibers had comparable surface areas (BET surface area about 2200 m2 g−1) with pore size predominantly in the range of 1–5 nm, while surface area of PAN/MWCNT samples was significantly lower (BET surface area 970 m2 g−1). The highest capacitance and energy density was obtained for PAN/SWCNT samples, suggesting SWCNT advantage in charge storage. The capacitance behavior of these electrodes has also been tested in ionic liquids, and the energy density in ionic liquid is about twice the value obtained using KOH electrolyte.  相似文献   

6.
We report a new class of electrochemical capacitors by utilizing vertically aligned carbon nanotubes as the electrodes and environmentally friendly ionic liquids (ILs) as the electrolytes. With their vertically aligned structures and well spacing, aligned carbon nanotubes showed a strong capacitive behavior in the ionic liquid electrolyte. Plasma etching played an important role in opening the end tips of nanotubes and in introducing defects and oxygenated functionalization to the nanotubes, further enhancing the capacitive behavior of carbon nanotubes. With the combined contribution from double-layer capacitance and redox pseudocapacitance, carbon nanotubes showed a remarkable capacitance in ionic liquid electrolyte. Combining the highly capacitive behavior of carbon nanotube electrodes with the large electrochemical window of ionic liquid electrolytes, the resultant capacitors showed a high cell voltage, high energy density, and high power density, potentially outperforming the current electrochemical capacitor technology. The device configuration incorporating vertically aligned nanostructured electrodes and inherently safe electrolytes would be useful for improving performances for new energy storage technologies.  相似文献   

7.
Performances of electric double layer capacitors (EDLCs) based on an activated carbon electrode with acetonitrile (ACN), propylene carbonate (PC), or a ternary electrolyte, i.e., PC:ethylene carbonate (EC):diethyl carbonate (DEC), at 1 mol dm−3 of magnesium perchlorate [Mg(ClO4)2] salt have been investigated. The electrochemical responses were studied by impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge experiments at 25 °C in a three-electrode configuration. For a comparative evaluation, lithium perchlorate (LiClO4) salt-based systems were also evaluated. All the observed results showed typical EDLC characteristics within the potential range between 0 and 1 V vs. an Ag/Ag+ reference electrode. The Mg-based systems exhibited similar or rather better performances than the corresponding Li-based electrolytes; in particular, the rate capability of Mg-based ACN and PC electrolytes was much better than the corresponding Li-based electrolytes, indicating the high accessibility and utility of activated carbon pores by solvated Mg ions.  相似文献   

8.
Activated carbon (AC) fiber cloths and hydrophobic microporous polypropylene (PP) membrane, both modified by plasma-induced graft polymerization of acrylic acid (AAc) under UV irradiation, and filled with saturated lithium hydroxide solution were used as electrodes, a separator and electrolyte in electric double layer capacitors (EDLCs). The modification process changed the hydrophobic character of AC and PP materials to hydrophilic, made them wettable and serviceable as components of an electrochemical capacitor. The presence of poly(acrylic acid) on the AC and PP surface was confirmed by SEM and XPS methods. Electrochemical characteristics of EDLCs were investigated by cyclic voltammetry and galvanostatic charge-discharge cycle tests and also by impedance spectroscopy. At the 1000th cycle of potential cycling (1 A g−1) the specific capacitance of 110 F g−1 was obtained with a specific energy of 11 Wh kg−1 at power density of 1 kW kg−1. The above results provide valuable information which may be used when developing novel compositions of EDLCs.  相似文献   

9.
Charge/discharge behavior of electric double-layer capacitors composed of activated carbon fiber cloth (ACFC) electrodes and an organic electrolyte was investigated. The modification of the ACFC electrodes was performed using cold plasma generated in argon-oxygen atmosphere. The effect of the cold plasma treatment of the ACPC electrodes on the capacitor performance was discussed on the basis of the physical and chemical properties of the ACFC surface such as pore radius distribution and surface atom concentration.  相似文献   

10.
We present a new method to improve the rate capability of an electric double layer capacitor (EDLC) using a thin polymer layer having a high concentration of carbon material on a current collector (CLC). A novel thermocuring coating composed of a glycol-chitosan, a pyromellitic acid and a conductive carbon powder can form stable CLC on a metal foil current collector simply by spreading and curing at 160 °C for a couple of minutes. We compared the performance of some demonstration EDLC cells using three kinds of current collector: a conventional aluminum oxide foil for EDLC, an aluminum foil and an aluminum foil with CLC. The cell with the CLC had a much higher rate capability than the cell without CLC. Only the CLC cell was able to discharge at a current density of 500C. This cell shows a slight deterioration in capacity in a high temperature, continuous charging, life test, and the CLC has a suppressing effect on the internal resistance increase of EDLCs. The use of a CLC film current collector is one of the most effective and simple methods for the improvement of EDLC rate performance. In particular, a current collector consisting of aluminum foil coupled with a CLC promises to be a low cost alternative to the aluminum oxide foil commonly used in EDLCs.  相似文献   

11.
The electrolyte salts composed of tetramethylammonium (TMA+) cation and difluoro(oxalato)borate (DFOB) or bis(oxalato)borate (BOB) anions have been proposed for the application in activated carbon (AC)/graphite capacitors. The electrochemical performance of AC/graphite capacitors has been studied using these electrolyte salts dissolved in propylene carbonate (PC). The intercalation behaviors of anions (BF4, DFOB, and BOB) at the graphite positive electrodes have been investigated by in situ XRD measurements. The bigger the anion is, the higher the cell voltage is where the intercalation happens. Accordingly, the bigger the anion is, the smaller discharge capacity delivered by an AC/graphite capacitor. The charge mechanism of TMA+ at the AC negative side has also been addressed. Compared with other bigger quaternary alkyl ammonium cations, the specific capacitance of the AC negative electrode towards TMA+ adsorption is somehow smaller as estimated.  相似文献   

12.
The effect of water contamination in the electrolyte on the performance of AC/graphite capacitor has been investigated by electrochemical tests and in situ XRD measurements. The deterioration mechanisms for the charge storage ability of the electrodes in the capacitors using polluted electrolytes have also been addressed.  相似文献   

13.
KPF6 dissolved in propylene carbonate (PC) has been proposed as an electrolyte for activated carbon (AC)/graphite capacitors. The electrochemical performance of AC/graphite capacitor has been tested in XPF6-PC or XBF4-PC electrolytes (X stands for alkali or quaternary alkyl ammonium cations). The AC/graphite capacitor using KPF6-PC electrolyte shows an excellent cycle-ability compared with other electrolytes containing alkali ions. The big decomposition of the PC solvent at the AC negative electrode is considerably suppressed in the case of KPF6-PC, which fact has been correlated with the mild solvation of K+ by PC solvent. The relationship between the ionic radius of cation and the corresponding specific capacitance of AC negative electrode also proves that PC-solvated K+ ions are adsorbed on AC electrode instead of naked K+ ions.  相似文献   

14.
A new type of low cost and high energy asymmetric capacitor based on only activated carbons for both electrodes has been developed in a safe and environment friendly aqueous electrolyte. In such electrolyte, the charges are stored in the electrical double-layer and through fast faradaic charge transfer processes. By taking profit of different redox reactions occurring in the positive and negative ranges of potential, it is possible to optimize the capacitor either by balancing the mass of the electrodes or by using different optimized carbons for the positive and negative electrodes. The best results are obtained in the latter case, by utilizing different pseudo-faradaic properties of carbons in order to increase the capacitance and to shift the potentials of water decomposition and destructive oxidation of activated carbon to more negative and positive values, respectively. After an additional adjustment of potentials by mass-balancing the two electrodes, the electrochemical capacitor can be reversibly charged/discharged at 1.6 V in aqueous medium, with energy densities close to the values obtained with electrical double-layer capacitors working in organic electrolytes, while avoiding their disadvantages.  相似文献   

15.
The electrochemical properties of an electrochemical double-layer capacitor electrode based on an ultra-long (500 μm), aligned, carbon nanotube array (ACNTA) in Et4NPF6/propylene carbonate electrolyte are examined. The specific capacitance of the ACNTA electrode in an organic electrolyte is 24.5 F g−1, which is larger than that obtained in an aqueous electrolyte. The results of ac impedance measurements show that the ACNTA electrode gives a high power density and an excellent rate capability in an organic electrolyte. It is shown that the ACNTA electrode has a lower equivalent series resistance and a better rate capability than activated carbon electrode. This is due to the fact that ACNTA possesses a larger pore size and a more a regular pore structure. Both these features are conformed by scanning electron microscopic and nitrogen gas adsorption studies.  相似文献   

16.
An activated carbon fiber felt (ACFF) cathode lacking metal catalysts is used in an upflow microbial fuel cell (UMFC). The maximum power density with the ACFF cathode is 315 mW m−2, compared to lower values with cathodes made of plain carbon paper (67 mW m−2), carbon felt (77 mW m−2), or platinum-coated carbon paper (124 mW m−2, 0.2 mg-Pt cm−2). The addition of platinum to the ACFF cathode (0.2 mg-Pt cm−2) increases the maximum power density to 391 mW m−2. Power production is further increased to 784 mW m−2 by increasing the cathode surface area and shaping it into a tubular form. With ACFF cutting into granules, the maximum power is 481 mW m−2 (0.5 cm granules), and 667 mW m−2 (1.0 cm granules). These results show that ACFF cathodes lacking metal catalysts can be used to substantially increase power production in UMFC compared to traditional materials lacking a precious metal catalyst.  相似文献   

17.
Asymmetric aqueous electrochemical capacitors with energy densities as high as 22 Wh kg−1, power densities of 11 kW kg−1 and a cell voltage of 2 V were fabricated using cost effective, high surface carbon derived from coal tar pitch and manganese dioxide. The narrow pore size distribution of the activated carbon (mean pore size ∼0.8 nm) resulted in strong electroadsorption of protons making them suitable for use as negative electrodes. Amorphous manganese dioxide anodes were synthesized by chemical precipitation method with high specific capacitance (300 F g−1) in aqueous electrolytes containing bivalent cations. The fabricated capacitors demonstrated excellent cyclability with no signs of capacitance fading even after 1000 cycles.  相似文献   

18.
Polymeric carbon/activated carbon aerogels were synthesized through sol-gel polycondensation reaction followed by the carbonization at 800 °C under Argon (Ar) atmosphere and subsequent physical activation under CO2 environment at different temperatures with different degrees of burn-off. Significant increase in BET specific surface area (SSA) from 537 to 1775 m2g1 and pore volume from 0.24 to 0.94 cm3g1 was observed after physical activation while the pore size remained constant (around 2 nm). Morphological characterization of the carbon and activated carbons was conducted using X-ray diffraction (XRD) and Raman spectroscopy. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to investigate the effect of thermal treatment (surface cleaning) on the chemical composition of carbon samples.Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to analyse the capacitive and resistive behaviour of non-activated/activated/and surface cleaned activated carbons employed as electroactive material in a two electrode symmetrical electrochemical capacitor (EC) cell with 6 M KOH solution used as the electrolyte.CV measurements showed improved specific capacitance (SC) of 197 Fg1 for activated carbon as compared to the SC of 136 Fg1 when non-activated carbon was used as electroactive material at a scan rate of 5 mVs−1. Reduction in SC from 197 Fg1 to 163 Fg1 was witnessed after surface cleaning at elevated temperatures due to the reduction of surface oxygen function groups.The result of EIS measurements showed low internal resistance for all carbon samples indicating that the polymeric carbons possess a highly conductive three dimensional crosslinked structure. Because of their preferred properties such as controlled porosity, exceptionally high specific surface area, high conductivity and desirable capacitive behaviour, these materials have shown potential to be adopted as electrode materials in electrochemical capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号