首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supported Co catalysts with different supports were prepared for hydrogen generation (HG) from catalytic hydrolysis of alkaline sodium borohydride solution. As a result, we found that a γ-Al2O3 supported Co catalyst was very effective because of its special structure. A maximum HG rate of 220 mL min−1 g−1 catalyst and approximately 100% efficiency at 303 K were achieved using a Co/γ-Al2O3 catalyst containing 9 wt.% Co. The catalyst has quick response and good durability to the hydrolysis of alkaline NaBH4 solution. It is feasible to use this catalyst in hydrogen generators with stabilized NaBH4 solutions to provide on-site hydrogen with desired rate for mobile applications, such as proton exchange membrane fuel cell (PEMFC) systems.  相似文献   

2.
The present paper reports preliminary results relating to a search for durable cobalt-based catalyst intended to catalyze the hydrolysis of sodium borohydride (NaBH4). Fluorination of Co [Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Appl Phys A 2001; 72: 209–12.] has attracted our attention whereas the fluorination of Co boride has never been envisaged so far. Our first objective was to compare the reactivity of fluorinated Co with that of Co boride. We focused our attention on the formation of Co boride from fluorinated Co. Our second objective was to show the fluorination effect on the reactivity of Co. Our third objective was to find an efficient, durable Co catalyst. It was observed a limited stabilization of the Co surface by virtue of the fluorination, which made the formation of surface Co boride more difficult while the catalytic activity was unaltered. The fluorination did not affect the number of surface active sites. Nevertheless, it did not prevent the formation of Co boride. The fluorination of Co boride was inefficient. Hence, fluorination is a way to gain in stabilization of the catalytic surface but it is quite inefficient to hinder the boride formation. Accordingly, it did not permit to compare the reactivity of Co boride with that of Co.  相似文献   

3.
Co-B catalysts were prepared by the chemical reduction of CoCl2 with NaBH4 for hydrogen generation from borohydride hydrolysis. The catalytic properties of the Co-B catalysts were found to be sensitive to the preparation conditions including pH of the NaBH4 solution and mixing manner of the precursors. A Co-B catalyst with a very high catalytic activity was obtained through the formation of a colloidal Co(OH)2 intermediate. The ultra-fine particle size of 10 nm accounted for its super activity for hydrogen generation with a maximum rate of 26 L min−1 g−1 at 30 °C. The catalyst also changed the hydrolysis kinetics from zero-order to first-order.  相似文献   

4.
Porous carbon nanostructures are promising supports for stabilizing the highly dispersed metal nanoparticles and facilitating the mass transfer during the reaction, which are critical to achieve the high efficiency of hydrogen generation from sodium borohydride dehydrogenation. Herein, the catalytically active porous architectures are simply prepared by using 2-methylimidazole and melamine as reactive sources. The structural and compositional characterizations reveal the coexistence of metallic cobalt and N-doped carbon in porous architectures. Electron microscopy observations indicate that the synthesized products are smartly constructed from the carbon nanosheets with densely dispersed Co nanoparticles. Due to the notable structural features, the prepared Co@NC-600 sample presents the highly efficient activity for catalytic hydrolysis of NaBH4 with a hydrogen generation rate of 2574 mL min−1 gcat−1 and an activation energy of 47.6 kJ mol−1. The catalytically active metallic Co and suitable support-effect of N-doped carbon are responsible for catalytic dehydrogenation.  相似文献   

5.
Extended application of hydrogen as energy carrier demands an economical, safe and reliable technology for storage. In particular, chemical hydrides appear as capable and promising to overcome the issues related to hydrogen safety and handling and to be considered competitive with respect to conventional fuels.  相似文献   

6.
The present research paper reports preliminary results about the utilization of anhydrous aluminum chloride (AlCl3) for accelerating hydrogen generation through hydrolysis of aqueous solution of sodium borohydride (NaBH4) at 80 °C. To the best of our knowledge, AlCl3 has never been considered for that reaction although many transition metal salts had already been assessed. AlCl3 reactivity was compared to those of AlCl3·6H2O, AlF3, CoCl2, RuCl3 and NiCl2. With AlCl3 and a NaBH4 solution having a gravimetric hydrogen storage capacity (GHSC) of 2.9 wt.%, almost 100% hydrogen was generated in few seconds, i.e., with a hydrogen generation rate (HGR) of 354 L min−1 g−1(Al). This HGR is one of the highest rates ever reported. Higher HGRs were obtained by mixing AlCl3 with CoCl2, RuCl3 or NiCl2. For example, the system RuCl3:AlCl3 (50:50 mass proportion) showed a HGR > 1000 L min−1 g−1(Ru:Al). The hydrolysis by-products (once dried) were identified (by XRD, IR and elemental analysis) as being Al(OH)3, NaCl and Na2B(OH)4Cl and it was observed that even in situ formed Al(OH)3 has catalytic abilities with HGRs of 5 L min−1 g−1(Al). All of these preliminary results are discussed, which concludes that AlCl3 has a potential as accelerator for single-use NaBH4-based storage system.  相似文献   

7.
Hydrogen generation through sodium borohydride (NaBH4) hydrolysis has attracted much attention. This reaction has to be catalyzed by metal-based materials. We studied the catalytic potential of cobalt (II) and (III) salts. Some of them have never been studied, and compared to e.g. cobalt nanoparticles or powder, and cobalt borides. CoCl2 showed the best performance. In our opinion, CoCl2 should not be dismissed from the large number of catalysts. One could conceive portable applications using CoCl2; this is briefly discussed. CoCl2 was compared to both commercial cobalt boride and in-situ formed (through our hydrolysis conditions) cobalt boride. Their hydrogen generation rates were 86.3, 1.0 and 1.6 L min−1 g−1(Co), respectively. The hydrogen generation rate of CoCl2 is one of the highest ones reported so far. It is assumed that cobalt boride surface evolves during the reaction and depends on the hydrolysis medium features. Further studies are required to fully explain the complex reaction mechanisms.  相似文献   

8.
Hydrogen production from alkaline sodium borohydride (NaBH4) solution via hydrolysis process over activated carbon supported cobalt catalysts is studied. Activated carbons are used in their original form and after liquid phase oxidation with HNO3. The changes in surface functional groups of the activated carbon are detected by FTIR spectroscopy. The effects of HNO3 oxidation on the properties of the activated carbon and the resulting catalyst performance are investigated. FTIR analysis reveals that the oxidative treatment leads to the formation of various functional groups on the surface of the activated carbon. Cobalt catalysts supported on the modified activated carbon are found to exhibit higher activity and stability.  相似文献   

9.
10.
Electrodeposition was used to deposit cobalt over polycarbonate membrane (PCM), which was used as stable supported catalyst in hydrolysis of sodium borohydride NaBH4. We selected PCM as support owing to its lightness, easy handling, stability, and porous structure with nanosized channels. Our primary objective was to obtain a catalytic film resistant to both physical degradation and delamination while H2 bubbled on its surface. A thin film consisting of mushroom-like cobalt nanoarchitectures were prepared. By SEM, we observed that it is strongly embedded into the PCM thickness, with the anchoring occurring through the channels. This shaped catalyst was mechanically stable and did not show degradation during the reaction. The main results are reported and discussed in details herein.  相似文献   

11.
In this study, it is aimed to investigate hydrogen (H2) generation from sodium borohydride (NaBH4) hydrolysis by multi-walled carbon nanotube supported platinum catalyst (Pt/MWCNT) under various conditions (0–0.03 g Pt amount catalyst, 2.58–5.03 wt % NaBH4, and 27–67 °C) in detail. For comparison, carbon supported platinum (Pt/C) commercial catalyst was used for H2 generation experiments under the same conditions. The reaction rate of the experiments was described by a power law model which depends on the temperature of the reaction and concentrations of NaBH4. Kinetic studies of both Pt/MWCNT and Pt/C catalysts were done and activation energies, which is the required minimum energy to overcome the energy barrier, were found as 27 kJ/mol and 36 kJ/mol, respectively. Pt/MWCNT catalyst is accelerated the reaction less than Pt/C catalyst while Pt/MWCNT is more efficient than Pt/C catalyst, they are approximately 98% and 95%, respectively. According to the results of experiments and the kinetic study, the reaction system based on NaBH4 in the presence of Pt/MWCNT catalyst can be a potential hydrogen generation system for portable applications of proton exchange membrane fuel cell (PEMFC).  相似文献   

12.
Hydrogen is expected to play an important role as an energy carrier in the world's future energy systems, as it is environmentally friendly and flexible in use. Hydrolysis of NaBH4 is a promising and effective method, especially for fuel cells and other portable devices, thanks to hydrogen release. Therefore, catalyst research is of great importance in the development of this technology. In this study, Ni/Dolomite catalyst was synthesized by wet impregnation method and used in hydrolysis process. Additionally, the effects of reaction temperature (30–60 °C), nickel content (10–40 wt%), catalyst amount (25–125 mg), NaOH concentration (0.10–0.75 M), and an initial amount of NaBH4 (25–125 mg) on hydrogen yield were investigated. Eventually, the catalyst with 40 wt% Ni content was assigned as the most suitable catalyst, attaining H2 production of 100% with a rate of 88.16 mL H2/gcat.min at 60 °C with 5 mL of 0.25 M NaOH, NaBH4, and Ni/Dolomite catalyst (100 mg).  相似文献   

13.
The catalyst with high activity and durability plays a crucial role in the hydrogen generation systems for the portable fuel cell generators. In the present study, a ruthenium supported on graphite catalyst (Ru/G) for hydrogen generation from sodium borohydride (NaBH4) solution is prepared by a modified impregnation method. This is done by surface pretreatment with NH2 functionalization via silanization, followed by adsorption of Ru (III) ion onto the surface, and then reduced by a reducing agent. The obtained catalyst is characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Very uniform Ru nanoparticles with sizes of about 10 nm are chemically bonded on the graphite surface. The hydrolysis kinetics measurements show that the concentrations of NaBH4 and NaOH all exert considerable influence on the catalytic activity of Ru/G catalyst towards the hydrolysis reaction of NaBH4. A hydrogen generation rate of 32.3 L min−1 g−1 (Ru) in a 10 wt.% NaBH4 + 5 wt.% NaOH solution has been achieved, which is comparable to other noble catalysts that have been reported.  相似文献   

14.
As cobalt is an effective metal for catalyzing hydrolysis of NaBH4 to produce H2, Co3O4 is a proven catalyst for facilitating NaBH4 hydrolysis. Since Co3O4 can be designed into various morphologies, 2-dimensional plate-like Co3O4 can offer large contact surfaces. If the planar surfaces can be even porous, forming porous Co3O4 nanoplate (PCNP), this PCNP would be a promising catalyst for HG. Therefore, in this study, a facile approach is developed to fabricate such a PCNP for H2 generation (HG) from NaBH4 hydrolysis. Specifically, a cobaltic hexagonal nanoplate-like coordination polymer, which is synthesized via coordinating Co2+ with thiocyanuric acid (TA), is adopted as a precursor. Through calcination, Co-TA (CTA) is transformed into hexagonal nanoplate-like Co3O4 with pores to become PCNP. More importantly, PCNP showed quite different surficial reactivity and textural properties from commercial Co3O4 nanoparticle (Co3O4 NP), enabling PCNP to possess a much more superior catalytic activity towards HG from NaBH4 hydrolysis. PCNP also showed a comparatively low Ea of 35.12 kJ/mol in comparison with the reported catalysts, even precious metal catalysts, and it could be reused up to 10 cycles for HG with stable catalytic activities. These features confirm that PCNP is an advantageous catalyst for HG from NaBH4 hydrolysis.  相似文献   

15.
A multilayer catalyst consisting of a electrophoretically deposited thin film of carbon nanotubes (CNTs) on a substrate of carbon fibers, followed by a coating of polymer-derived silicon carbonitride (SiCN), which is then decorated with a monolayer of transition metals is shown to perform at the upperbound of the phenomemological prediction from an earlier work [1]. A figure-of-merit for first order kinetics is equal to 4600 L min−1 [NaBH4]−1 gmet−1, which is nearly 30 times the value reported in literature, is achieved. This high FOM is attributed to the CNT-thin film, as opposed to the thick CNT-paper used in previous work, thus needing merely 0.15 wt% quantities of precious metals for effective catalysis. This new architecture corroborates the concepts that: (i) the catalytic activity derives mainly from the surface of the CNT substrate, and (ii) the silicon carbonitride interlayer is instrumental in dispersing the transition metals into a monolayer. The hydrogen generation rate (HGR) for zero order kinetics, which is obtained when [NaBH4] > 0.03 M, is measured to be 75 L min−1 gmet−1, which is among the higher values reported in the literature. The present multilayer catalysts are able to perform without fading for many cycles, presumably because the bondings in the substrate are predominantly covalent. This feature adds further uniqueness to this multilayer catalyst.  相似文献   

16.
Carbon aerogels (CAs) with oxygen-rich functional groups and high surface area are synthesized by hydrothermal treatment of glucose in the presence of boric acid, and are used as the support for loading cobalt catalysts (CAs/Co). Cobalt nanoparticles distribute uniformly on the surface of ACs, creating highly dispersed catalytic active sites for hydrolysis of alkaline sodium borohydride solution. A rapid hydrogen generation rate of 11.22 L min−1 g(cobalt)−1 is achieved at 25 °C by hydrolysis of 1 wt% NaBH4 solution containing 10 wt% NaOH and 20 mg the CAs/Co catalyst with a cobalt loading of 18.71 wt%. Furthermore, various influences are systematically investigated to reveal the hydrolysis kinetics characteristics. The activation energy is found to be 38.4 kJ mol−1. Furthermore, the CAs/Co catalyst can be reusable and its activity almost remains unchanged after recycling, indicating its promising applications in fuel cell.  相似文献   

17.
Acid-catalyzed hydrolysis of sodium borohydride (NaBH4) has been studied (reactivity and kinetics) at high acid concentration (0.32 M). A mineral (hydrochloric acid, HCl) and an organic benign (acetic acid, CH3COOH) acid have been chosen. Our study has three distinct objectives, namely: (i) combining the simplicity of the storage of solid NaBH4 with the simplicity of the aqueous solution of acid; (ii) showing CH3COOH can be as reactive as HCl in specific well-chosen operating conditions; and (iii) emphasizing the relative greenness of the CH3COOH-based process. All of these objectives have been fulfilled and show that CH3COOH is a benign relatively green acid catalyst of choice for catalyzing hydrogen generation from NaBH4, the acid–water–NaBH4 system being quite simple.  相似文献   

18.
The effect of cobalt-based catalysts, i.e. CoCl2(20 wt% Co)/Al2O3 treated by different acids, on NaBH4 hydrolysis was investigated. Five acids were used: oxalic acid, citric acid, acetic acid, sulfuric acid and hydrochloric acid. Two ways of acid treatment were considered: (i) ex-situ addition of acid to CoCl2(20 wt% Co)/Al2O3 at room temperature and (ii) in-situ addition by mixing CoCl2, Al2O3 and acid (one-step process). Both ways showed that adding an acid to the catalyst contributed to an important increase of the catalytic activity towards the NaBH4 hydrolysis. The best performances were obtained with the catalysts treated with either HCl or CH3COOH as the global activity of CoCl2(20 wt% Co)/Al2O3 was increased up to 50%.  相似文献   

19.
Effective Co/Cu, CoB/Cu, and CoBM (M = Mo,Zn,Fe)/Cu catalysts were prepared on the copper surface by a simple electroless deposition method using a morpholine borane as a reducing agent in the glycine solution. The activity of the deposited catalysts was investigated for hydrogen generation from an alkaline sodium borohydride solution. It was determined that these synthesized catalysts demonstrated the catalytic activity for the hydrolysis reaction of NaBH4. The lowest obtained activation energy (EA) of the hydrolysis reaction of NaBH4was 27 kJ mol?1 for the CoBMo/Cu catalyst. The hydrogen generation rate of 15.30 ml min?1 was achieved using CoBMo/Cu catalysts at 313 K and it increased ~3.5 times with the increase of temperature to 343 K. The highest hydrogen generation rate obtained by CoBMo/Cu films may be related to the hierarchical cauliflower-shaped 3D structures and the high roughness surface area. Moreover, the CoBMo/Cu catalyst showed an excellent reusability.  相似文献   

20.
In this article, we report Co-Co2B and Ni-Ni3B nanocomposites as catalyst for hydrogen generation from alkaline sodium borohydride. Kinetic studies of the hydrolysis of sodium borohydride with Co-Co2B and Ni-Ni3B nanocomposites reveal that the concentration of NaBH4 has no effect on the rate of hydrogen generation. Hydrolysis was found to be first order with respect to the concentration of catalyst. The catalytic activity of Co-Co2B was found to be much higher than that of Ni-Ni3B as inferred from the activation energies 35.245 KJ/mol and 55.810 kJ/mol, respectively. Co-Co2B nanocomposites were found to be more magnetic than Ni-Ni3B. These catalysts showed superior recyclability with almost the similar catalytic activities for several hydrolytic cycles supporting the principles of sustainability. Co-Co2B catalyst showed hydrogen generation rate of about 4300 mL/min/g which is comparable to most of the reported good catalysts till date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号