首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Anode-supported proton-conducting fuel cell with BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte and Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) cathode was fabricated. Peak power densities of ∼420 and 135 mW/cm2 were achieved, respectively, at 700 and 450 °C for a cell with 35 μm thick electrolyte operating on hydrogen fuel. The endothermic nature of the ammonia decomposition reaction, however, resulted in cell temperature 30–65 °C lower than the furnace when operating on ammonia. Accounting the cooling effect, comparable power density was achieved for the cell operating on ammonia and hydrogen at high temperature. At reduced temperature, the cell demonstrated worse performance when operating on ammonia than on hydrogen due to the poor activity of the anode towards NH3 catalytic decomposition. By applying on-line catalytic decomposition products of N2H4 as the fuel, similar cell performance to that with NH3 fuel was also observed.  相似文献   

2.
The initialization of an anode-supported single-chamber solid-oxide fuel cell, with NiO + Sm0.2Ce0.8O1.9 anode and Ba0.5Sr0.5Co0.8Fe0.2O3−δ + Sm0.2Ce0.8O1.9 cathode, was investigated. The initialization process had significant impact on the observed performance of the fuel cell. The in situ reduction of the anode by a methane–air mixture failed. Although pure methane did reduce the nickel oxide, it also resulted in severe carbon coking over the anode and serious distortion of the fuel cell. In situ initialization by hydrogen led to simultaneous reduction of both the anode and cathode; however, the cell still delivered a maximum power density of ∼350 mW cm−2, attributed to the re-formation of the BSCF phase under the methane–air atmosphere at high temperatures. The ex situ reduction method appeared to be the most promising. The activated fuel cell showed a peak power density of ∼570 mW cm−2 at a furnace temperature of 600 °C, with the main polarization resistance contributed from the electrolyte.  相似文献   

3.
A nickel-based anode-supported solid oxide fuel cell (SOFC) was assembled with a 10 μm thick Ce0.8Sm0.2O2−δ (SDC) electrolyte and a Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) cathode. The cell performance was investigated with hydrogen and ammonia gas evaporated from liquefied ammonia as fuel. Fueled by hydrogen the maximum power densities were 1872, 1357, and 748 mW cm−2 at 650, 600, and 550 °C, respectively. While with ammonia as fuel, the cell showed the maximum power densities of 1190, 434, and 167 mW cm−2, correspondingly. The power densities lower than that predicted, particularly at the lower operating temperatures for ammonia fuel cell, compared to hydrogen fuel cell, could be attributed to actual lower temperature than thermocouple display due to endothermic reaction of ammonia decomposition as well as the rather larger inlet ammonia flow rate. The results demonstrated that the ammonia was a right convenient liquid fuel for SOFCs as long as it was keeping the decomposition completion of ammonia in the cell or before entering the cell.  相似文献   

4.
Nano-crystalline (Ba0.5Sr0.5)Co0.8Fe0.2O3−δ powder has been successfully synthesized by a novel sol–gel thermolysis method using a unique combination of PVA and urea. The decomposition and crystallization behaviour of the gel precursor was studied by TG/DTA analysis. The gel precursor was calcined at different temperatures and the phase evoluation was studied by X-ray diffraction (XRD) analysis. From the result of X-ray diffraction patterns, it is found that a cubic perovskite (Ba0.5Sr0.5)Co0.8Fe0.2O3−δ was formed by calcining the precursor at 450 °C for 5 h, but the well-crystalline cubic perovskite (Ba0.5Sr0.5)Co0.8Fe0.2O3−δ was obtained by calcining the precursor at 650 °C for 5 h. Morphological analysis of the powder calcined at various temperatures was done by scanning electron microscope (SEM). Thermogravimetric (TG) results showed the lattice oxygen loss of the product was about ∼2% in its original weight in the temperature range 40–900 °C. Finally, thermal expansion and electrical conductivity of the synthesized material were measured by dilatometer and four-probe dc method, respectively.  相似文献   

5.
A Sm0.5Sr0.5CoO3−δ-Ce0.8Sm0.2O2−δ (SSC-SDC) composite is employed as a cathode for proton-conducting solid oxide fuel cells (H-SOFCs). BaZr0.1Ce0.7Y0.2O3−δ (BZCY) is used as the electrolyte, and the system exhibits a relatively high performance. An extremely low electrode polarization resistance of 0.066 Ω cm2 is achieved at 700 °C. The maximum power densities are: 665, 504, 344, 214, and 118 mW cm−2 at 700, 650, 600, 550, and 500 °C, respectively. Moreover, the SSC-SDC cathode shows an essentially stable performance for 25 h at 600 °C with a constant output voltage of 0.5 V. This excellent performance implies that SSC-SDC, which is a typical cathode material for SOFCs based on oxide ionic conductor, is also a promising alternative cathode for H-SOFCs.  相似文献   

6.
A polyvinyl alcohol assisted combustion synthesis method was used to prepare Ce0.8Sm0.2O2−δ (SDC) powders for an intermediate temperature solid oxide fuel cell (IT-SOFC). The XRD results showed that this combustion synthesis route could yield phase-pure SDC powders at a relatively low calcination temperature. A thin SDC electrolyte film with thickness control was produced by a dry pressing method at a lower sintering temperature of 1250 °C. With Sm0.5Sr0.5Co3-SDC as the composite cathode, a single cell based on this thin SDC electrolyte was tested from 550 to 650 °C. The maximum power density of 936 mW cm−2 was achieved at 650 °C using humidified hydrogen as the fuel and stationary air as the oxidant.  相似文献   

7.
A novel Ba0.5Sr0.5Co0.8Fe0.2O3 − δ + LaCoO3 (BSCF + LC) composite oxide was investigated for the potential application as a cathode for intermediate-temperature solid-oxide fuel cells based on a Sm0.2Ce0.8O1.9 (SDC) electrolyte. The LC oxide was added to BSCF cathode in order to improve its electrical conductivity. X-ray diffraction examination demonstrated that the solid-state reaction between LC and BSCF phases occurred at temperatures above 950 °C and formed the final product with the composition: La0.316Ba0.342Sr0.342Co0.863Fe0.137O3 − δ at 1100 °C. The inter-diffusion between BSCF and LC was identified by the environmental scanning electron microscopy and energy dispersive X-ray examination. The electrical conductivity of the BSCF + LC composite oxide increased with increasing calcination temperature, and reached a maximum value of ∼300 S cm−1 at a calcination temperature of 1050 °C, while the electrical conductivity of the pure BSCF was only ∼40 S cm−1. The improved conductivity resulted in attractive cathode performance. An area-specific resistance as low as 0.21 Ω cm2 was achieved at 600 °C for the BSCF (70 vol.%) + LC (30 vol.%) composite cathode calcined at 950 °C for 5 h. Peak power densities as high as ∼700 mW cm−2 at 650 °C and ∼525 mW cm−2 at 600 °C were reached for the thin-film fuel cells with the optimized cathode composition and calcination temperatures.  相似文献   

8.
Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ (Ag/BSCF) electrodes were prepared using an electroless deposition technique. The morphology, microstructure and oxygen reduction reaction activity of the resulted Ag/BSCF electrodes were comparatively studied using Fourier transform infrared spectra, environmental scanning electron microscopy, temperature-programmed oxygen desorption, X-ray diffraction, and electrochemical impedance spectroscopy. An area-specific resistance as low as 0.038 Ω cm2 was achieved for N2H4-reduced Ag/BSCF cathode at 600 °C. Carbonates were detected over the BSCF surface during the reduction of silver, which deteriorated both the charge-transfer process and diffusion process of HCHO-reduced Ag/BSCF cathode for the oxygen electrochemical reduction reaction. An anode-supported single cell with an N2H4-reduced Ag/BSCF cathode showed a peak power of 826 mW cm−2 at 600 °C. In comparison, only 672 mW cm−2 was observed with the HCHO-reduced Ag/BSCF cathode.  相似文献   

9.
The potential application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) as a cathode for a proton-conducting solid-oxide fuel cell based on BaCe0.9Y0.1O2.95 (BCY) electrolyte was investigated. Cation diffusion from BCY to BSCF with the formation of a perovskite-type Ba2+-enriched BSCF and a Ba2+-deficient BCY at a firing temperature as low as 900 °C was observed, the higher the firing temperature the larger deviation of the A to B ratio from unit for the perovskites. Symmetric cell tests demonstrated the impurity phases did not induce a significant change of the cathodic polarization resistance, however, the ohmic resistance of the cell increased obviously. Anode-supported cells with the electrolyte thickness of ∼50 μm were successfully fabricated via a dual-dry pressing process for the single-cell test. Under optimized conditions, a maximum peak power density of ∼550 and 100 mW cm−2 was achieved at 700 and 400 °C, respectively, for the cell with the BSCF cathode layer fired from 950 °C. At 500 °C, the ohmic resistance is still the main source of cell resistance. A further reduction in membrane thickness would envisage an increase in power density significantly.  相似文献   

10.
This study presents the electrochemical performance of (Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3−δ (BSSCF) as a cathode material for intermediate temperature solid oxide fuel cells (IT-SOFC). AC-impedance analyses were carried on an electrolyte supported BSSCF/Sm0.2Ce0.8O1.9 (SDC)/Ag half-cell and a Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/SDC/Ag half-cell. In contrast to the BSCF cathode half-cell, the total resistance of the BSSCF cathode half-cell was lower, e.g., at 550 °C; the values for the BSSCF and BSCF were 1.54 and 2.33 Ω cm2, respectively. The cell performance measurements were conducted on a Ni-SDC anode supported single cell using a SDC thin film as electrolyte, and BSSCF layer as cathode. The maximum power densities were 681 mW cm−2 at 600 °C and 820 mW cm−2 at 650 °C.  相似文献   

11.
The Ba0.5Sr0.5Zn0.2Fe0.8O3−δ (BSZF) complex oxide with cubic perovskite structure was synthesized and examined as a new cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The electrical conductivity was relatively low with a peak value of 9.4 S cm−1 at about 590 °C, which was mainly caused by the high concentration of oxygen vacancy and the doping of bivalent zinc in B-sites. At 650 °C and under open circuit condition, symmetrical BSZF cathode on Sm-doped ceria (SDC) electrolyte showed polarization resistances (Rp) of 0.48 Ω cm2 and 0.35 Ω cm2 in air and oxygen, respectively. The dependence of Rp with oxygen partial pressure indicated that the rate-limiting step for oxygen reduction was oxygen adsorption/desorption kinetics. Using BSZF as the cathode, the wet hydrogen fueled Ni + SDC anode-supported single cell exhibited peak power densities of 392 mW cm−2 and 626 mW cm−2 at 650 °C when stationary air and oxygen flux were used as oxidants, respectively.  相似文献   

12.
The properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) + Sm0.2Ce0.8O1.9 (SDC) (70:30 in weight ratio) composite cathode for intermediate-temperature solid-oxide fuel cells were investigated. Mechanical mixing of BSCF with SDC resulted in the adhesion of fine SDC particles to the surface of coarse BSCF grains. XRD, SEM-EDX and O2-TPD results demonstrated that the phase reaction between BSCF and SDC was negligible, constricted only at the BSCF and SDC interface, and throughout the entire cathode with the formation of new (Ba,Sr,Sm,Ce)(Co,Fe)O3−δ perovskite phase at a firing temperature of 900, 1000, and ≥ 1050 °C, respectively. The BSCF + SDC electrode sintered at 1000 °C showed an area specific resistance of ∼0.064 Ω cm2 at 600 °C, which is a slight improvement over the BSCF (0.099 Ω cm2) owing to the enlarged cathode surface area contributed from the fine SDC particles. A peak power density of 1050 and ∼382 mW cm−2 was reached at 600 and 500 °C, respectively, for a thin-film electrolyte cell with the BSCF + SDC cathode fired from 1000 °C.  相似文献   

13.
A kind of cathode material of Pr1−xSrx FeO3 (x = 0–0.5) for intermediate temperature solid oxide fuel cells (IT-SOFCs) was prepared by the coprecipitation method. Crystal structure, thermal expansion, electrical conductivity and electrochemical performance of the Pr1−xSrxFeO3 perovskite oxide cathodes were studied by different methods. The results revealed that Prl−xSrxFeO3 exhibited similar orthorhombic structure from x = 0.1 to 0.3 and took cubic structure when x = 0.4–0.5. The unit cell volume decreased and the thermal expansion coefficient (TEC) of the materials increased as the strontium content increased. When 0 < x ≤ 0.3, the samples exhibited good thermal expansion compatibility with YSZ electrolyte. The electrical conductivity increased with the increasing of doped strontium content. When x = 0.3–0.5, the electrical conductivities were higher than 100 S cm−1. The conductivity of Pr0.8Sr0.2FeO3 was 78 S cm−1 at 800 °C. Compared with the La0.8Sr0.2MnO3 cathode, Pr0.8Sr0.2FeO3 showed higher polarization current density and lower polarization resistance (0.2038 Ω cm2). The value of I0 for Pr0.8Sr0.2FeO3 at 800 °C is 123.6 mA cm−2. It is higher than that of La0.8Sr0.2MnO3. Therefore, Pr1−xSrxFeO3 can be considered as a candidate cathode material for IT-SOFCs.  相似文献   

14.
In this study, a new oxygen-deficient cathode material, Sm0.5Sr0.5Co1−xCuxO3−δ (SSCCu) was developed. It is expected to enhance the efficiency of intermediate-temperature solid oxide fuel cells (IT-SOFCs). The structure, conductivity and electrochemical performance of SSCCu were examined as a function of copper content. The structure of Sm0.5Sr0.5Co0.9Cu0.1O3−δ and Sm0.5Sr0.5Co0.8Cu0.2O3−δ samples was a single orthorhombic perovskite phase. Second phase SrCoO2.8, however, formed in the Sm0.5Sr0.5Co0.7Cu0.3O3−δ and Sm0.5Sr0.5Co0.6Cu0.4O3−δ samples. The conductivity of the Sm0.5Sr0.5Co0.7Cu0.3O3−δ cathode was higher than that of other samples. However, the Sm0.5Sr0.5Co0.8Cu0.2O3−δ electrode exhibited the lowest overpotential of 25 mV at 400 mA cm−2 and the lowest area special resistance of 0.2 Ω cm2 at 700 °C.  相似文献   

15.
A novel nano-network of Sm0.5Sr0.5CoO3−δ (SSC) is successfully fabricated as the cathodes for intermediate-temperature solid oxide fuel cells (SOFCs) operated at 500–600 °C. The cathode is composed of SSC nanowires formed from nanobeads of less than 50 nm thus exhibiting high surface area and porosity, forming straight path for oxygen ion and electron transportation, resulting in high three-phase boundaries, and consequently showing remarkably high electrode performance. An anode-supported cell with the nano-network cathode demonstrates a peak power density of 0.44 W cm−2 at 500 °C and displays exceptional performance with cell operating time. The result suggests a new direction to significantly improve the SOFC performance.  相似文献   

16.
Hydrazine is a promising fuel for portable fuel cells because it is a liquid, it is carbon free and it has a high energy density. In this work, hydrazine was investigated as an efficient fuel for low temperature solid-oxide fuel cells (SOFCs) with a traditional nickel anode. A catalytic system with high selectivity toward hydrogen was developed using Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) as the main catalyst and potassium hydroxide as the promoter. The result of compositional analysis of the products showed that the hydrazine can be decomposed into hydrogen and nitrogen with 100% selectivity when an appropriate amount of KOH promoter is used. Acceptable power densities were achieved for a thin-film samaria-doped ceria (SDC) electrolyte cell operating on hydrazine decomposition products and hydrogen over a complete operation temperature range of 650–450 °C. In addition, a similar cell with ammonia as the fuel displayed a much lower performance.  相似文献   

17.
Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) was synthesized successfully by a novel citric acid–nitrate combustion method and employed as the anode of solid oxide electrolysis cells (SOEC) for hydrogen production for the first time in this paper. The crystal structure, chemical composition and electrochemical properties of BSCF were investigated in detail. The results showed that BSCF is in good stoichiometry of Ba0.5Sr0.5Co0.8Fe0.2O3−σ formation. ASR of BSCF/YSZ is only 0.077 Ω cm2 at 850 °C, remarkably lower than the commonly used oxygen materials LSM as well as the current focus materials LSC and LSCF. Also, BSCF electrode exhibited much better performance than LSM under both SOEC and SOFC operating modes. The hydrogen production rate of BSCF/YSZ/Ni-YSZ can be up to 147.2 mL cm−2 h−1, about three times higher than that of LSM/YSZ/Ni-YSZ, which indicates that BSCF could be a very promising candidate for the practical application of SOEC technology.  相似文献   

18.
An anode-supported La0.9Sr0.1Ga0.8Mg0.2O3 − δ (LSGM) electrolyte membrane is successfully fabricated by simple, cost-effective spin coating process. Nano-sized NiO and Ce0.8Gd0.2O3 − α (GDC) powders derived from precipitation and citric-nitrate process, respectively, are used for anode support. The dense and uniform LSGM membrane of ca. 50 μm in thickness is obtained by sintering at relatively low temperature 1300 °C for 5 h. A single cell based on the as-prepared LSGM electrolyte membrane exhibits desirable high cell performance and generates high output power densities of 760 mW cm−2 at 700 °C and 257 mW cm−2 at 600 °C, respectively, when operated with humidified hydrogen as the fuel and air as the oxidant. The single cell is characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and electrochemical AC impedance. The results demonstrate that it is feasible to fabricate dense LSGM membrane for solid oxide fuel cell by this simple, cost-effective and efficient process. In addition, optimized anode microstructure significantly reduces polarization resistance (0.025 Ω cm2 at 700 °C).  相似文献   

19.
A dense and crack-free La0.9Sr0.1Ga0.8Mg0.2O3 − δ thin film has been prepared by RF magnetron sputtering. The XRD, FESEM, XPS and four-probe technique are employed to characterize the La0.9Sr0.1Ga0.8Mg0.2O3 − δ film. Results show that after annealing at 1000 °C, the La0.9Sr0.1Ga0.8Mg0.2O3 − δ film presents a polycrystalline perovskite structure with grain size of 100–300 nm. XPS data show that both La and Ga are in their +3 state. Sr element has two chemical states which are related to Sr2+ in the perovskite lattice and SrO1 − δ suboxide. The O 1s spectrum also shows two chemical states which can be assigned to molecularly adsorbed O2 species and O2− in the lattice. The electrical conductivity reaches to 0.093 S cm−1 at 800 °C. The microstructure and conductivity analysis indicates that the La0.9Sr0.1Ga0.8Mg0.2O3 − δ thin film prepared by RF magnetron sputtering is suitable for intermediate temperature Solid oxide fuel cell.  相似文献   

20.
A new cobalt-free perovskite oxide Pr0.5Sr0.5Fe0.8Cu0.2O3−δ (PSFC) has been synthesized and evaluated as cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The chemical compatibility of PSFC with Sm0.2Ce0.8O1.9 (SDC) electrolyte has be proven by XRD, and its electrical conductivity reaches the maximum value of 264.1 S cm−1 at 475 °C. Symmetrical cells with the configuration of PSFC/SDC/PSFC are used for the impedance study and the polarization resistance (Rp) of PSFC cathode is as low as 0.050 Ω cm2 at 700 °C. Single cells, consisting of Ni–YSZ/YSZ/SDC/PSFC structure, are assembled and tested from 550 °C to 800 °C with wet hydrogen (∼3% H2O) as fuel and static air as oxidant. A maximum power density of 1077 mW cm−2 is obtained at 800 °C. All the results suggest that the cobalt-free perovskite oxide PSFC is a very promising cathode material for application in IT-SOFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号