首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Structural evolution during topotactical electrochemical lithium insertion and deinsertion reactions in ramsdellite-like LixTi2O4 has been followed by means of in situ X-ray diffraction techniques. The starting LixTi2O4 (x = 1) exists as a single phase with variable composition which extends in the range 0.50 ≤ x ≤ 1.33. However, beyond the lower and upper compositional limits, two other single phases, with ramsdellite-like structure, are detected. The composition of these single phases are: TiO2 upon lithium deinsertion and Li2Ti2O4 upon lithium insertion. Both TiO2 and Li2Ti2O4 are characterized by narrow compositional ranges. The close structural relationship between pristine LiTi2O4 and the inserted and deinserted compounds together with the relative small volume change over the whole insertion–deinsertion range (not more than 1.1% upon reduction) is a guaranty for the high capacity retention after long cycling in lithium batteries. The small changes in cell parameters well reflect the remarkable flexibility of the ramsdellite framework against lithiation and delithiation reactions.  相似文献   

2.
Cathode materials prepared by a co-precipitation are 0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (0.2 ≤ x ≤ 0.4) cathode materials with a layered-spinel structure. In the voltage range of 2.0-4.6 V, the cathodes show more than one redox reaction peak during its cyclic voltammogram. The Li/0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (x = 0.3, y = 0.2) cell shows the initial discharge capacity of about 200 mAh g−1. However, when x = 0.2 and y = 0.1, the cell exhibits a rapid decrease in discharge capacity and poor cycle life.  相似文献   

3.
A series of cathode materials with molecular notation of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) were synthesized by combination of co-precipitation and solid state calcination method. The prepared materials were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques, and their electrochemical performances were investigated. The results showed that sample 0.6Li[Li1/3Mn2/3]O2·0.4Li[Ni1/3Mn1/3Co1/3]O2 (x = 0.6) delivers the highest capacity and shows good capacity-retention, which delivers a capacity ∼250 mAh g−1 between 2.0 and 4.8 V at 18 mA g−1.  相似文献   

4.
Composites of monoclinic Li3−xM′xV2−yM″2y(PO4)3 (M′ = K, M″ = Sc, Mg + Ti) with carbon were synthesized by solid-state reaction using oxalic acid or 6% H2/Ar gas mixture as reducing agents at sintering temperature of 850 °C. The samples were characterized by X-ray diffraction (XRD), voltammetry and electrochemical galvanostatic cycling. The capacity of Li3V2(PO4)3 synthesized using hydrogen as the reducing agent was 127 mA h g−1 and decreased to 120 mA h g−1 after 20 charge-discharge cycles. The substitution of lithium and vanadium for other ions did not result in the improvement of the electrochemical characteristics of the samples.  相似文献   

5.
A new type of Li1−xFe0.8Ni0.2O2–LixMnO2 (Mn/(Fe + Ni + Mn) = 0.8) material was synthesized at 350 °C in air atmosphere using a solid-state reaction. The material had an XRD pattern that closely resembled that of the original Li1−xFeO2–LixMnO2 (Mn/(Fe + Mn) = 0.8) with much reduced impurity peaks. The Li/Li1−xFe0.8Ni0.2O2–LixMnO2 cell showed a high initial discharge capacity above 192 mAh g−1, which was higher than that of the parent Li/Li1−xFeO2–LixMnO2 (186 mAh g−1). We expected that the increase of initial discharge capacity and the change of shape of discharge curve for the Li/Li1−xFe0.8Ni0.2O2–LixMnO2 cell is the result from the redox reaction from Ni2+ to Ni3+ during charge/discharge process. This cell exhibited not only a typical voltage plateau in the 2.8 V region, but also an excellent cycle retention rate (96%) up to 45 cycles.  相似文献   

6.
Structural changes of bare and AlPO4-coated LixCoO2 with a coating thickness of 20 and 200 nm are investigated at x = 0.24 and 0.1 after thermal annealing at 200, 300, and 400 °C using XRD and Co K-edge XANES (X-ray absorption near-edge structure) and EXAFS (extended X-ray absorption fine structure). Both the bare and coated cathodes exhibit faster phase transformation into spinel phases at lower annealing temperatures as x in LixCoO2 is decreased. Bare LixCoO2 cathodes exhibit phase transitions from LixCo2O4 to Co3O4 spinel as the annealing temperature is increased and the x is value decreased, which suggests a possible reaction according to (1/2)LixCo2O4 → xLi2CO3 + (1/3)Co3O4 + (2/3)O2. However, the coated cathodes sustain a LixCo2O4 phase even at 400 °C and x = 0.1. This indicates that the AlPO4 coating layer suppresses the LixCo2O4 phase decomposition into Co3O4.  相似文献   

7.
Prospective positive-electrode (cathode) materials for a lithium secondary battery, viz., Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08), were synthesized using a solid-state pyrolysis method. The structural and electrochemical properties were examined by means of X-ray diffraction, cyclic voltammetry, SEM and charge–discharge tests. The results demonstrated that the powders maintain the α-NaFeO2-type layered structure regardless of the chromium content in the range x ≤ 0.08. The Cr doping of x = 0.04 showed improved capacity and rate capability comparing to undoped Li[Li0.2Ni0.2Mn0.6]O2. ac impedance measurement showed that Cr-doped electrode has the lower impedance value during cycling. It is considered that the higher capacity and superior rate capability of Cr-doping samples would be ascribed to the reduced resistance of the electrode during cycling.  相似文献   

8.
To improve the performance of LiFePO4, single phase Li1−xNaxFePO4/C (x = 0, 0.01, 0.03, 0.05) samples are synthesized by in situ polymerization restriction-carbonthermal reduction method. The effects of Na doping are studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results indicate that doped Na ion does not destroy the lattice structure of LiFePO4, while enlarges the lattice volume. Electrochemical test results show that the Li0.97Na0.03FePO4/C sample exhibits the best electrochemical performance with initial special discharge capacity of 158 mAh g−1 at 0.1 C. EIS results demonstrate that the charge transfer resistance of the sample decreases greatly by doping an appropriate amount of Na.  相似文献   

9.
Li3V(2 − 2x/3)Mgx(PO4)3/C (x = 0, 0.15, 0.30, 0.45) composites have been synthesized by the sol-gel assisted solid state method, using adipic acid C6H10O4 (hexanedioic acid) as carbon source. The particle size of the composites is ∼1 μm. During the pyrolysis process, Li3V(2 − 2x/3)Mgx(PO4)3/C network structure is formed. The effect of Mg2+ doped on the electrochemical properties of Li3V2(PO4)3/C positive materials has been studied. Li3V1.8Mg0.30(PO4)3/C as the cathode materials of Li-ion batteries, the retention rate of discharge capacity is 91.4% (1 C) after 100 cycles. Compared with Li3V2(PO4)3/C, Li3V(2 − 2x/3)Mgx(PO4)3/C composites have shown enhanced capacity and retention rate capability. The long-term cycles and ex situ XRD tests disclose that Li3V1.8Mg0.30(PO4)3 exhibits higher structural stability than the undoped system.  相似文献   

10.
Bulk conduction and relaxation of the [(ZrO2)1−x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions were studied using impedance spectroscopy at intermediate temperatures (200-500 °C). The bulk conductivity as a function of x shows a “V-shape” variation which is a competitive effect of the defect associates and the lattice parameter. In the ZrO2-rich region (x < 0.5) CeO2 doping increases the concentration of defect associates which limits the mobility of the oxygen vacancies; in the CeO2-rich region (x > 0.5) the increase of x increases the lattice parameter which enlarges the free channel for oxygen vacancy migration. Further analysis indicates the ionic radius of the tetravalent dopant determines the composition dependence of the ionic conductivity of the solid solutions. When doping YSZ with other tetravalent dopant with similar ionic radius with Zr4+, e.g., Hf4+, such “V-shape” composition dependence of the bulk conductivity cannot be observed.  相似文献   

11.
We investigated the effect of CO2 on layered Li1+zNi1−xyCoxMyO2 (M = Al, Mn) cathode materials for lithium ion batteries which were prepared by solid-state reactions. Li1+zNi(1−x)/2CoxMn(1−x)/2O2 (Ni/Mn mole ratio = 1) singularly exhibited high storage stability. On the other hand, Li1+zNi0.80Co0.15Al0.05O2 samples were very unstable due to CO2 absorption. XPS and XRD measurements showed the reduction of Ni3+ to Ni2+ and the formation of Li2CO3 for Li1+zNi0.80Co0.15Al0.05O2 samples after CO2 exposure. SEM images also indicated that the surfaces of CO2-treated samples were covered with passivation films, which may contain Li2CO3. The relationship between CO2-exposure time and CO32− content suggests that there are two steps in the carbonation reactions; the first step occurs with the excess Li components, Li2O for example, and the second with LiNi0.80Co0.15Al0.05O2 itself. It is well consistent with the fact that the discharge capacity was not decreased and the capacity retention was improved until the excess lithium is consumed and then fast deterioration occurred.  相似文献   

12.
Structural, electrical and electrochemical properties of Mn-substituted phospho-olivines LiFe1−yMnyPO4 were investigated and compared to those of LiFePO4. Rietvield refined XRD patterns taken in the course of delithiation process showed apparent difference between phase compositions of these cathode materials upon lithium extraction. Contrary to the LiFePO4 and LiMnPO4 compositions for which a two-phase mechanism of electrochemical lithium extraction/insertion is observed, in case of Mn-substituted LiFe1−yMnyPO4 samples a single-phase mechanism of deintercalation was observed in the studied range of lithium concentration. Electrochemical characterization of the cathode materials were performed in Li/Li+/LixFe1−yMnyPO4-type cells for y = 0.0, 0.25, 0.55, 0.75 and 1.0 compositions. Voltammery studies showed low reversibility of the lithium extraction process in the high-voltage “manganese” range, while in the “iron” range the reversibility of lithium extraction is high. Impedance measurements of the LiFe1−yMnyPO4 cathode materials, which enabled separation of the ionic and electronic components of their entire electrical conductivity, showed distinct influence of Mn content on the electronic part of conductivity. EIS measurements performed at different states of cell charge revealed that the charge-transfer impedance in LixFe1−yMnyPO4 is much lower than that of LixFePO4.  相似文献   

13.
Sub-micro spinel LiNi0.5−xMn1.5+xO4 (x < 0.1) cathode materials powder was successfully synthesized by the ultrasonic-assisted co-precipitation (UACP) method. The structure and electrochemical performance of this as-prepared powder were characterized by powder XRD, SEM, XPS, CV and the galvanostatic charge–discharge test in detail. XRD shows that there is a small LiyNi1−yO impurity peak placed close to the (4 0 0) line of the spinel LiNi0.5−xMn1.5+xO4, and the powders are well crystallized. XPS exhibits that the Mn oxidation state is between +3 and +4, and Ni oxidation state is +2 in LiNi0.5−xMn1.5+xO4. SEM shows that the prepared powders (UACP) have the uniform and narrow size distribution which is less than 200 nm. Galvanostatic charge–discharge test indicates that the initial discharge capacities for the LiNi0.5−xMn1.5+xO4 (UACP) at C/3, 1C and 2C, are 130.2, 119.0 and 110.0 mAh g−1, respectively. After 100 cycles, their capacity retentions are 99.8%, 88.2%, and 73.5%, respectively. LiNi0.5−xMn1.5+xO4 (UACP) at C/3 discharge rate exhibits superior capacity retention upon cycling, and it also shows well high current discharge performance. CV curve implies that LiNi0.5−xMn1.5+xO4 (x < 0.1) spinel synthesized by ultrasonic-assisted co-precipitation method has both reversibility and cycle capability because of the ultrasonic-catalysis.  相似文献   

14.
Direct borohydride fuel cells (DBFCs), with a series of perovskite-type oxides La1−xSrxCoO3 (x = 0.1-0.5) as the cathode catalysts and a hydrogen storage alloy as the anode catalyst, are studied in this paper. The structures of the perovskite-type catalysts are mainly La1−xSrxCoO3 (x = 0.1-0.5) oxides phases. However, with the increase of strontium content, the intensities of the X-ray diffraction peaks of the impure phases La2Sr2O5 and SrLaCoO4 are gradually enhanced. Without using any precious metals or expensive ion exchange membranes, a maximum current density of 275 mA cm−2 and a power density of 109 mW cm−2 are obtained with the Sr content of x = 0.2 at 60 °C for this novel type of fuel cell.  相似文献   

15.
A two-dimensional sample array synthesis has been used to screen carbon-coated Li(1−x)Mgx/2FePO4 and LiFe(1−y)MgyPO4 powders as potential positive electrode materials in lithium ion batteries with respect to x, y and carbon content. The synthesis route, using sucrose as a carbon source as well as a viscosity-enhancing additive, allowed introduction of the Mg dopant from solution into the sol–gel pyrolysis precursor. High-throughput XRD and cyclic voltammetry confirmed the formation of the olivine phase and percolation of the electronic conduction path at sucrose to phosphate ratios between 0.15 and 0.20. Measurements of the charge passed per discharge cycle showed that the capacity deteriorated on increasing magnesium in Li(1−x)Mgx/2FePO4, but improved with increasing magnesium in LiFe(1−y) MgyPO4, especially at high scan rates. Rietveld-refined XRD results on samples of LiFe(1−y)MgyPO4 prepared by a solid-state route showed a single phase up to y = 0.1 according to progressive increases in unit cell volume with increases in y. Carbon-free samples of the same materials showed conductivity increases from 10−10 to 10−8 S cm−1 and a decrease of activation energy from 0.62 to 0.51 eV. Galvanostatic cycling showed near theoretical capacity for y = 0.1 compared with only 80% capacity for undoped material under the same conditions.  相似文献   

16.
We report the effect of Y substitution for Nb on Li ion conductivity in the well-known garnet-type Li5La3Nb2O12. Garnet-type Li5La3Nb2−xYxO12−δ (0 ≤ x ≤ 1) was prepared by ceramic method using the high purity metal oxides and salts. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), 7Li nuclear magnetic resonance (Li NMR) and AC impedance spectroscopy were employed for characterization. PXRD showed formation of single-phase cubic garnet-like structure for x up to 0.25 and above x = 0.25 showed impurity in addition to the garnet-type phases. The cubic lattice constant increases with increasing Y content up to x = 0.25 in Li5La3Nb2xYxO12−δ and is consistent with expected ionic radius trend. 7Li MAS NMR showed single peak, which could be attributed to fast migration of ions between various sites in the garnet structure, close to chemical shift 0 ppm with respect to solid LiCl and which confirmed that Li ions are distributed at an average octahedral coordination in Li5La3Nb2xYxO12δ. Y-doped compounds showed comparable electrical conductivity to that of the parent compound Li5La3Nb2O12. The x = 0.1 member of Li5La3Nb2xYxO12δ showed total (bulk + grain-boundary) ionic conductivity of 1.44 × 10−5 Scm−1 at 23 °C in air.  相似文献   

17.
The interface resistance between LixFePO4 and poly(ethylene oxide) (PEO)-Li(CF3SO2)2N (LiTFSI) was examined by AC impedance measurement of a LixFePO4/PEO-LiTFSI/LixFePO4 cell in the temperature range of 30-60 °C. Four types of resistance, R0, R1, R2 and R3 were proposed according to analysis of the cell impedance using an equivalent circuit. The sum of R0 and R1 in the high frequency range is consistent with the resistance of the PEO electrolyte. R2 in the middle frequency range is related to lithium ion transport to an active point for charge transfer inside the composite electrode, and R3 in the low frequency range is considered to be the charge transfer resistance. The activation energy for R2 was affected by the thickness and composition of the electrode, whereas that for R3 was not.  相似文献   

18.
Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 layered materials were synthesized by the co-precipitation method with different Li/M molar ratios (M = Ni + Mn + Co). Elemental titration evaluated by inductively coupled plasma spectrometry (ICP), structural properties studied by X-ray diffraction (XRD), Rietveld analysis of XRD data, scanning electron microscopy (SEM) and magnetic measurements carried out by superconducting quantum interference devices (SQUID) showed the well-defined α-NaFeO2 structure with cationic distribution close to the nominal formula. The Li/Ni cation mixing on the 3b Wyckoff site of the interlayer space was consistent with the structural model [Li1−yNiy]3b[Lix+yNi(1−x)/3−yMn(1−x)/3Co(1−x)/3]3aO2 (x = 0.02, 0.04) and was very small. Both Rietveld refinements and magnetic measurements revealed a concentration of Ni2+-3b ions lower than 2%; moreover, for the optimized sample synthesized at Li/M = 1.10, only 1.43% of nickel ions were located into the Li sublattice. Electrochemical properties were investigated by galvanostatic charge-discharge cycling. Data obtained with Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 reflected the high degree of sample optimization. An initial discharge capacity of 150 mAh g−1 was delivered at 1 C-rate in the cut-off voltage of 3.0-4.3 V. More than 95% of its initial capacity was retained after 30 cycles at 1 C-rate. Finally, it is demonstrated that a cation mixing below 2% is considered as the threshold for which the electrochemical performance does not change for Li1+x(Ni1/3Mn1/3Co1/3)1−xO2.  相似文献   

19.
In this work structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1−xO2 oxides (x = 0; 0.03; 0.06) prepared by a “soft chemistry” method are presented. The excessive lithium was found to significantly improve transport properties of the materials, a corresponding linear decrease of the unit cell parameters was observed. The electrical conductivity of Li1.03(Mn1/3Co1/3Ni1/3)0.97O2 composition was high enough to use this material in a form of a pellet, without any additives, in lithium batteries and characterize structural and transport properties of deintercalated Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 compounds. For deintercalated samples a linear increase of the lattice parameter c together with a linear decrease of the parameter a with the increasing deintercalation degree occurred, but only up to 0.4-0.5 mol of extracted lithium. Further deintercalation showed a reversal of the trend. Electrical conductivity measurements performed of Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 samples (y = 0.1; 0.3; 0.5; 0.6) showed an ongoing improvement, almost two orders of magnitude, in relation to the starting composition. Additionally, OCV measurements, discharge characteristics and lithium diffusion coefficient measurements were performed for Li/Li+/Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号