共查询到20条相似文献,搜索用时 10 毫秒
1.
Parallel channels have many advantages, such as low pressure drop and easy fabrication, but they may cause flow maldistribution which would result in low reaction efficiency. This study presents an analytical model to calculate the flow distribution of the parallel channels based on the assumption of the analogy between fluid flow and electrical network. The model, which ultimately releases from the solution of a set of nonlinear equations, is validated by comparing with the results obtained from three-dimensional computational fluid dynamics (CFD) simulations. Consequently, the model is used to optimize the geometric dimension of a parallel plate to obtain a uniform flow field distribution. 相似文献
2.
A general theoretical model based on mass and momentum conservation has been developed to solve the flow distribution and the pressure drop in Z-type configurations of fuel cells. While existing models neglected either friction term or inertial term, the present model takes both of them into account. The governing equation of the Z-type arrangement was formulated to an inhomogeneous version of the U-type one. Thus, main existing models have been unified to one theoretical framework. The analytical solutions are fully explicit that they are easily used to predict pressure drop and flow distribution for Z-type layers or stacks and provide easy-to-use design guidance under a wide variety of combination of flow conditions and geometrical parameters to investigate the interactions among structures, operating conditions and manufacturing tolerance and to minimize the impact on stack operability. The results can also be used for the design guidance of flow distribution and pressure drop in other manifold systems, such as plate heat exchanges, plate solar collectors, distributors of fluidised bed and boiler headers. 相似文献
3.
《International Journal of Hydrogen Energy》2022,47(52):22180-22191
Uniformity of fluid distribution in the manifold is extremely essential to enhance the output performance and prolong the lifetime of high power proton exchange membrane (PEM) fuel cell stack. The entrance effects are usually ignored in the existing studies focusing on the fluid distribution at stack level, which cannot thoroughly guide the high-power fuel cell stack development. In this study, the effects of entrance geometry on the fluid distribution in manifold for a high-power fuel cell stack are investigated using computational fluid dynamics (CFD) method. Optimizations of the intermediate zone configuration in upper endplate and inlet tube diameter are conducted under different current densities. Results show that the fluid distribution in manifold is strongly influenced by entrance geometry which determines the generation of vortexes. The mass flow rates in unit cells near the entrance of the stack with diffuser-type intermediate zone are enhanced compared to the non-diffuser-type intermediate zone. The coefficient of variation (CV) of mass flow rate decreases dramatically as the ratio of inlet tube to manifold hydraulic diameter (RITMHD) increases and then raises. The experimental and simulation results are useful in guiding the design of high-power PEM fuel cell stacks to seek higher power density. 相似文献
4.
In this study, the pressure variation and the flow distribution in the manifold of a fuel-cell stack are simulated by a computational fluid dynamics (CFD) approach. Two dimensional stack model composed of 72 cells filled with porous media is constructed to evaluate pressure drop caused by channel flow resistance. In order to simplify this model, electrochemical reactions, heat and mass transport phenomena are ignored and air is treated as working fluid to investigate flow distribution in stacks. Design parameters such as the permeability of the porous media, the manifold width and the air feeding rate were changed to estimate uniformity of the flow distribution in the manifold. A momentum-balance theory and a pressure-drop model are presented to explain the physical mechanism of flow distribution. Modeling results indicate that both the channel resistance and the manifold width can enhance the uniformity of the flow distribution. In addition, a lower air feeding rate can also enhance the uniformity of flow distribution. However, excessive pressure drop is not beneficial for realistic applications of a fuel-cell stack and hence enhanced manifold width is a better solution for flow distribution. 相似文献
5.
Current distributions in a proton exchange membrane fuel cell (PEMFC) with interdigitated and serpentine flow fields under various operating conditions are measured and compared. The measurement results show that current distributions in PEMFC with interdigitated flow fields are more uniform than those observed in PEMFC with serpentine flow fields at low reactant gas flow rates. Current distributions in PEMFC with interdigitated flow fields are rather uniform under any operating conditions, even with very low gas flow rates, dry gas feeding or over-humidification of reactant gases. Measurement results also show that current distributions for both interdigitated and serpentine flow fields are significantly affected by reactant gas humidification, but their characteristics are different under various humidification conditions, and the results show that interdigitated flow fields have stronger water removal capability than serpentine flow fields. The optimum reactant gas humidification temperature for interdigitated flow fields is higher than that for serpentine flow fields. The performance for interdigitated flow fields is better with over-humidification of reactant gases but it is lower when air is dry or insufficiently humidified than that for serpentine flow fields. 相似文献
6.
Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming 总被引:2,自引:0,他引:2
Yanxiong Liu 《Journal of power sources》2010,195(11):3529-8249
In this paper, the rubber pad forming process is used to fabricate the metallic bipolar plate for a proton exchange membrane (PEM) fuel cell, which has multi-array micro-scale flow channels on its surface. The rubber pad forming process has the following advantages: high surface quality and dimensional accuracy of the formed parts, low cost of the die because only one rigid die is required, and high efficiency. The process control parameters (rubber hardness, internal and outer radii, draft angle) of the rubber pad forming are analyzed by the finite element method using the commercial software Abaqus. After that, the rubber pad forming process is used to manufacture a metallic bipolar plate of SS304 stainless steel with perfect flow micro-channels. The results of this effort indicated that the rubber pad forming process is a feasible technique for fabricating the bipolar plates of PEM fuel cells. 相似文献
7.
Bladimir Ramos-AlvaradoAbel Hernandez-Guerrero Francisco Elizalde-BlancasMichael W. Ellis 《International Journal of Hydrogen Energy》2011,36(20):12965-12976
A plate-type constructal flow distributor is implemented as a gas distributor for a proton exchange membrane fuel cell. A 3D complete model is simulated using CFD techniques. The fuel cell model includes the gas flow channels, the gas diffusion layers and the membrane-electrode assembly (MEA). The governing equations for the mass and momentum transfer are solved including the pertinent source terms due to the electrochemical reactions in the different zones of the fuel cell. Three constructal flow configurations were studied; each pattern is a fractal expansion of the original design, therefore, the only difference between them is the number of branches in the geometry. It was found that the number of branches is the key parameter in the performance of a fuel cell when using the constructal distributors as flow channels. The performance of the fuel cell is reported in I-V curves, power curves, and overpotential curves in order to determine which irreversibility is the main cause of energy losses. In terms of flow analysis, it was found that the constructal flow distributor presents a low pressure drop for a wide range of Reynolds number conditions at the inlet, as well as an excellent uniformity of flow distribution. Regardless of the outstanding hydrodynamic performance of the constructal distributors and the large current density values obtained, the implementation of these designs as flow patterns for PEMFCs need further optimization; first, the manufacturing of the plates have to be addressed in an efficient way; and secondly, the application in stacks will require an elaborate design to accomplish this task. 相似文献
8.
Kevin O’NeilJeremy P. Meyers Robert M. DarlingMichael L. Perry 《International Journal of Hydrogen Energy》2012,37(1):373-382
Oxygen gain is the difference in hydrogen fuel cell performance operating on oxygen-depleted and oxygen-rich cathode fuel streams. Oxygen gain experiments provide insight into the degree of oxygen mass-transport resistance within a fuel cell. By taking these measurements under different operating conditions, or over time, one can determine how oxygen mass transport varies with operating modes and/or aging. This paper provides techniques to differentiate between mass-transport resistance within the catalyst layer and within the gas-diffusion medium for a polymer-electrolyte membrane fuel cell. Two extreme cases are treated in which all mass transfer limitations are located only (i) within the catalyst layer or (ii) outside the catalyst layer in the gas-diffusion medium. These two limiting cases are treated using a relatively simple model of the cathode potential and common oxygen gain experimental techniques. This analysis demonstrates decisively different oxygen gain behavior for the two limiting cases. For catalyst layer mass transfer resistance alone, oxygen gain values are limited to a finite range of values. However, for gas-diffusion layer mass transfer resistance alone, the oxygen gain is not confined to a finite range of values. Therefore, this work provides a straightforward diagnostic method for locating the prominent source of mass transfer degradation in a PEMFC cathode. 相似文献
9.
Aluminate cement/graphite conductive composite bipolar plate for proton exchange membrane fuel cells
Aluminate cement/graphite conductive composite bipolar plate for proton exchange membrane fuel cells (PEMFC) was prepared by mold pressing at room temperature. The effect of size of graphite particles on the conductivity and the flexural strength of composite bipolar plate were discussed. Resistance to acid corrosion, thermal property and pore size distribution of this composite bipolar plate were also investigated in this paper. The experiment results show that the conductivity and the flexural strength of this composite bipolar plate can be improved by choosing uniform size graphite as conductive fillers. The corrosion current is about 10−4.5 A cm−2 from polarization curves of this composite bipolar plate, which shows that this composite bipolar plate is acid corrosion-resistant. Al and Ca ions may leach from this composite bipolar plate after 1 M H2SO4 acid corrosion. But Al and Ca ions leaching from this composite bipolar plate are only a little percentage of the total Al and Ca ions content in the composite bipolar plate after acid corrosion at 30 °C. This composite bipolar plate is also thermally stable from room temperature to 400 °C. The large amount of pore in this composite bipolar plate is gel capillary pores because of the hydration and solidification of aluminate cement, which make it possess humidifying function during the PEMFC operating. 相似文献
10.
Dong Liang Meiling Dou Ming Hou Qiang Shen Zhigang Shao Baolian Yi 《Journal of power sources》2011,196(13):5595-5598
Durability is an important issue in proton exchange membrane fuel cells (PEMFCs) currently. Fuel starvation could be one of the reasons for PEMFC degradation. In this research, the fuel starvation conditions of a unit cell in a stack are simulated experimentally. Cell voltage, current distribution and localized interfacial potentials are detected in situ to explore their behaviors under different hydrogen stoichiometries. Results show that the localized fuel starvation occurs in different sections at anode under different hydrogen stoichiometries when the given hydrogen is inadequate. This could be attributed to the “vacuum effect” that withdraws fuel from the manifold into anode. Behaviors of current distribution show that the current will redistribute and the position of the lowest current shifts close to the anode inlet with decreasing hydrogen stoichiometry, which indicates that the position of the localized fuel starvation would move towards the inlet of the cell. It is useful to understand the real position of the degradation of MEA. 相似文献
11.
In this paper, a supervisor system, able to diagnose different types of faults during the operation of a proton exchange membrane fuel cell is introduced. The diagnosis is developed by applying Bayesian networks, which qualify and quantify the cause–effect relationship among the variables of the process. The fault diagnosis is based on the on-line monitoring of variables easy to measure in the machine such as voltage, electric current, and temperature. The equipment is a fuel cell system which can operate even when a fault occurs. The fault effects are based on experiments on the fault tolerant fuel cell, which are reproduced in a fuel cell model. A database of fault records is constructed from the fuel cell model, improving the generation time and avoiding permanent damage to the equipment. 相似文献
12.
Stavros Lazarou Eleftheria Pyrgioti Antonio T. Alexandridis 《Journal of power sources》2009,190(2):380-386
A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results. 相似文献
13.
Fuel cell visualization is an ongoing challenge in the world of hydrogen-based research. Neutron tomography is a powerful tool for acquiring otherwise unattainable information about the inner workings of a proton exchange membrane fuel cell. Advanced neutron imaging methods allow for validation of both cell design and run methods. The tomography techniques discussed in this paper show how 3D visualization provides a clear view of flow channel activity for water management analysis. A brief intro to tomography is explained via its mathematical construction, outlining how 2D radiographs can be reconstructed and layered to form 3D visualizations. The low attenuation aluminum cell designs used for imaging are described focusing on how they are specifically tailored for neutron tomography. Images of the flow channel and water distributions are shown in cross-sections throughout the cell, both perpendicular and along the channel length. Finally, 3D tomography images of the cell are shown, with the bipolar aluminum plates signal subtracted revealing a 3D water distribution of both cathode and anode layers. 相似文献
14.
Daniel G. Strickland 《Journal of power sources》2010,195(6):1667-563
Air-delivery is typically the largest parasitic loss in PEM fuel cell systems. We develop a passive water management system that minimizes this loss by enabling stable, flood-free performance in parallel channel architectures, at very low air stoichiometries. Our system employs in situ-polymerized wicks which conform to and coat cathode flow field channel walls, thereby spatially defining regions for water and air transport. We first present the fabrication procedure, which incorporates a flow field plate geometry comparable to many state-of-the-art architectures (e.g., stamped metal or injection molded flow fields). We then experimentally compare water management flow field performance versus a control case with no wick integration. At the very low air stoichiometry of 1.15, our system delivers a peak power density of 0.68 W cm−2. This represents a 62% increase in peak power over the control case. The open channel and manifold geometries are identical for both cases, and we demonstrate near identical inlet-to-outlet cathode pressure drops at all fuel cell operating points. Our water management system therefore achieves significant performance enhancement without introducing additional parasitic losses. 相似文献
15.
In a typical proton exchange membrane fuel cell (PEMFC), a gas crossover brings parasitic reaction, such as hydrogen and carbon oxidation at the cathode and oxygen reduction at the anode, which reduces open circuit potential (OCP) because of undesired potential mixing. Therefore, a two-dimensional computational fluid dynamics model was formulated to elucidate the variation of cell polarization, as the parameters affecting the mixed-potential effect change. The present model was validated by comparing the simulated cell polarization with experimentally measured cell polarization. The membrane electrode assembly was prepared by the decal transfer method, which gives uniform electrode formation. Model comparisons were also conducted to clearly state the significance of the fuel crossover and carbon oxidation reaction on OCP decrease. The results have shown that model prediction fits experimental data with an acceptable range of error, under two different relative humidity conditions of 50 and 100%. In addition, further investigations were conducted on (i) effect of gas permeation coefficient in membrane, (ii) effect of membrane thickness and (iii) effect of carbon oxidation and their influences on OCP and cell polarization are discussed. 相似文献
16.
《International Journal of Hydrogen Energy》2020,45(22):12432-12442
This work presents the development of liquid-cooled industry-scale bipolar plates for improved water management in PEM Fuel Cells. The methods used for the design development are based on Computational Fluid Dynamics (CFD) modelling and simulation, and Neutron Radiography experiments to analyse liquid water distributions within the cell for different operating conditions.A novel 140 cm2 bipolar plate was designed and manufactured on 0.1 mm thick stainless steel using pre-coated strip steel. CFD modelling carried out for the novel design predicted a significant improvement in terms of cell performance, as well as a more uniform temperature distribution within the membrane. Liquid water distributions were later analysed by neutron radiography experiments, defining a set of different operating conditions (current density, stoichiometry, inlet gases dew point, and cell temperature).Electrochemical and neutron radiography results are presented for all cases and the influence of the operating conditions is discussed. Liquid water distributions within the cell are also analysed and compared against the CFD model results obtained. The influence of the gas flow configuration (reactant gases and cooling water) is clearly observable in the results. 相似文献
17.
Microstructured membranes for improving transport resistances in proton exchange membrane fuel cells
《International Journal of Hydrogen Energy》2020,45(2):1304-1312
Proton exchange membrane fuel cells (PEMFCs) have been identified as one of the most promising renewable energy system for use in automotive applications. However, due to the wide range of weather conditions around the world, the PEMFCs must be stable for operating under these variable conditions. One of the inefficiencies of PEMFCs in automotive applications is during vehicle warm-up, where the low hydration level within the PEMFC can lead to a low performance of the fuel cell. In this study, a proton exchange membrane (PEM) was prepared with regular, microstructured features tuned over a range of aspect ratios. These microstructured membranes were incorporated into MEAs and analyzed for their membrane, proton, and oxygen transport resistances. These fuel cells were tested under different conditions to simulate vehicle start-up, normal operating conditions, and hot operating conditions. It was determined that microstructured PEMs improved performance over planar PEMs under both the start-up and hot conditions. Despite the improved performance of the microstructured PEMs, a high hydrogen cross-over and short-circuit current were also observed for these samples. Adjusting the preparation techniques and tuning the dimensions of the microstructures may provide avenues for further optimization of PEMFC performance. 相似文献
18.
In the present work, instantaneous gas flow rates in each of two parallel channels of gas-liquid two-phase flow systems were investigated through measurements of the pressure drop across the entrance region. Liquid flow rates in two branches were pre-determined through liquid injection independently into each channel. Experiments were conducted in two different manners, i.e., the gas flow rate was varied in both ascending and descending paths. Flow hysteresis was observed in both gas flow rate distributions and the overall pressure drop of two-phase flow systems. Effects of liquid flow rates on gas flow distributions were examined experimentally. The presence of flow hysteresis was found to be associated with different flow patterns at different combinations of gas and liquid flow rates and flow instability conditions. A new and simple method was developed to predict gas flow distributions based on flow regime-specific pressure drop models for different experimental approaches and flow patterns. In particular, two different two-phase pressure drop models were used for slug flow and annular flow, separately. Good agreement was achieved between theoretical predictions and our experimental data. The developed new method can be potentially applied to predict gas flow distributions in parallel channels for fuel cells. 相似文献
19.
A compact integrated fuel-processing system consisting of a plate-fin reformer (PFR) and a multi-stage preferential oxidation reactor is designed in this paper. The PFR, which was based on a plate-fin heat exchanger, is very compact, and reactant vaporization, methanol steam reforming and combustion are all integrated in it. Both internal plate-fins and external catalytic combustion were used to enhance heat transfer of the reformer, which offers both high methanol conversion ratio and low CO concentration, so that the water–gas shift reactor, which provides primary CO cleanup, is not necessary in this fuel-processing system. This will result in simplification of the fuel-processing system design and capital cost reduction. The performance of the main components in the fuel-processing system has been investigated. The axial temperatures of the different chambers in PFR were uniform, and the temperatures at the inlet and outlet of the PROX reactors were controlled strictly by plate-fin exchangers so that it could minimize parasitic hydrogen oxidation. In addition, the results indicated that this fuel-processing system can provide a high concentration of hydrogen and the system efficiency is always maintained above 75%. It is further demonstrated that the fuel-processing system could be operated autothermally and exhibited good test stability. 相似文献
20.
Proton exchange membrane (PEM) fuel cell performance is directly related to the flow channel design on bipolar plates. Power gains can be found by varying the type, size, or arrangement of channels. The objective of this paper is to present two new flow channel patterns: a leaf design and a lung design. These bio-inspired designs combine the advantages of the existing serpentine and interdigitated patterns with inspiration from patterns found in nature. Both numerical simulation and experimental testing have been conducted to investigate the effects of two new flow channel patterns on fuel cell performance. From the numerical simulation, it was found that there is a lower pressure drop from the inlet to outlet in the leaf or lung design than the existing serpentine or interdigitated flow patterns. The flow diffusion to the gas diffusion layer was found be to more uniform for the new flow channel patterns. A 25 cm2 fuel cell was assembled and tested for four different flow channels: leaf, lung, serpentine and interdigitated. The polarization curve has been obtained under different operating conditions. It was found that the fuel cell with either leaf or lung design performs better than the convectional flow channel design under the same operating conditions. Both the leaf and lung design show improvements over previous designs by up to 30% in peak power density. 相似文献