首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Air-cooled proton exchange membrane fuel cells (PEMFCs), having combined air cooling and oxidant supply channels, offer significantly reduced bill of materials and system complexity compared to conventional, water-cooled fuel cells. Thermal management of air-cooled fuel cells is however a major challenge. In the present study, a 3D numerical thermal model is presented to analyze the heat transfer and predict the temperature distribution in air-cooled PEMFCs. Conservation equations of mass, momentum, species, and energy are solved in the oxidant channel, while energy equation is solved in the entire domain, including the membrane electrode assembly (MEA) and bipolar plates. The model is validated with experiments and can reasonably predict the maximum temperature and main temperature gradients in the stack. Large temperature variations are found between the cool incoming air flow and the hot bipolar plates and MEA, and in contrast to water-cooled fuel cells, significant temperature gradients are detected in the flow direction. Furthermore, the air velocity and in-plane thermal conductivity of the plate are found to play an important role in the thermal performance of the stack.  相似文献   

2.
A learning curve model has been developed to analyze the mass production cost structure of proton exchange membrane fuel cells for automobiles. The fuel cell stack cost is aggregated by the cost of membranes, platinum, electrodes, bipolar plates, peripherals and assembly process. The mass production effects on these components are estimated. Nine scenarios with different progress ratios and future power densities are calculated by the learning curve for cumulative production of 50 000 and 5 million vehicles. The results showed that the fuel cell stack cost could be reduced to the same level as that of an internal combustion engine today, and that the key factors are power density improvement and mass production process of bipolar plates and electrodes for reducing total cost of fuel cell stack.  相似文献   

3.
《Applied Thermal Engineering》2007,27(14-15):2463-2472
In the steel industry it is of great importance to be able to control the surface temperature and heating- or cooling rates during heat treatment processes. An experiment was performed in which a steel slab was heated up to 1250 °C in a fuel fired test furnace. The transient surface temperature and heat flux of a steel slab is calculated using a model for inverse heat conduction. That is, the time dependent local surface temperature and heat flux of a slab is calculated on the basis of temperature measurements in selected points of its interior by using a model of inverse heat conduction. Time- and temperature histories were measured at three points inside a steel slab. Measured temperature histories at the two lower locations of the slab were used as input to calculate the temperature at the position of the third location. A comparison of the experimentally measured and the calculated temperature histories was made to verify the model. The results showed very good agreement and suggest that this model can be applied to similar applications in the Steel industry or in other areas where the target of investigation for some reason is inaccessible to direct measurements.  相似文献   

4.
Stainless steel is attractive as material for bipolar plates in proton exchange membrane fuel cells, due to its high electrical conductivity, high mechanical strength and relatively low material and processing cost. Potentiostatic and potentiodynamic tests were performed in H2SO4 solutions on AISI 316L stainless steel bipolar plates with etched flow fields. The effect of pH and presence of small amounts of fluoride and chloride on the corrosion rate and interfacial contact resistance of the stainless steel bipolar plate were investigated. The tests performed in electrolytes with various pH values revealed that the oxide layer was thinner and more prone to corrosion at pH values significantly lower than the pH one expects the bipolar plate to experience in an operating proton exchange membrane fuel cells. The use of solutions with very low pH in such measurements is thus probably not the best way of accelerating the corrosion rate of stainless steel bipolar plates. By use of strongly acidic solutions the composition and thickness of the oxide layer on the stainless steel is probably altered in a way that might never have happened in an operating proton exchange membrane fuel cell. Additions of fluoride and chloride in the amounts expected in an operating fuel cell (2 ppm F and 10 ppm Cl) did not cause significant changes for neither the polarization- nor the contact resistance measurements. However, by increasing the amount of Cl to 100 ppm, pitting was initiated on the stainless steel surface.  相似文献   

5.
An inverse problem for turbulent forced convection between parallel flat plates is investigated. The space- and time-dependent heat flux at the upper wall is estimated from the temperature measurements taken inside the flow. In the present study, the conjugate gradient method is adopted for the estimation of the unknown wall heat flux. No prior information is needed for the functional form of the wall heat flux in the inverse analysis. The effects of the measurement errors, the functional form of the wall heat flux, and the location of the sensors on the accuracy of the estimation are investigated. The reconstruction of the wall heat flux is satisfactory when simulated exact or noisy data are input to the inverse analysis. The sensitivity coefficients are discussed in this paper. As expected, it is shown that the accuracy of the estimation can be improved when the sensors are located closer to the upper wall.  相似文献   

6.
A solution scheme based on the maximum entropy method (MEM) for the solution of one-dimensional inverse heat conduction problem is proposed. The present work introduces MEM in order to build a robust formulation of the inverse problem. MEM finds the solution which maximizes the entropy functional under the given temperature measurements. In order to seek the most likely inverse solution, the present method converts the inverse problem to a non-linear constrained optimization problem. The constraint of the problem is the statistical consistency between the measured temperature and the estimated temperature. Successive quadratic programming (SQP) facilitates the maximum entropy estimation. The characteristic feature of the method is discussed with the sample numerical results. The presented results show considerable enhancement in the resolution of the inverse problem and bias reduction in comparison with the conventional methods.  相似文献   

7.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent base heat flux of an annular fin from the knowledge of temperature measurements taken within the fin. The inverse solutions will be justified based on the numerical experiments in which two specific cases to determine the unknown base heat flux are examined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors upon the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent base heat flux can be obtained for the test cases considered in this study.  相似文献   

8.
《Journal of power sources》1996,62(2):167-174
The production of electricity in a fuel cell system is associated with the production of an equivalent amount of thermal energy, both for large size power plants and for transportation applications. The heat released by the cells must be removed by a cooling system, characterized by its small size and weight, which must be able to assure uniform work conditions and reduce performance losses. Based upon realistic assumptions, a mathematical model has been developed to determine the temperature and current density distribution in a solid polymer electrolyte fuel cell (SPEFC) stack as a function of operating conditions and stack geometry. The model represents a useful tool to identify operating conditions, such as to have an optimal longitudinal and axial temperature profile, so allowing the design of cooling system and bipolar plates. In this paper, the model has been applied to determine the temperature profile of an experimental SPEFC stack. The model is validated by comparing model results with experimental measurements; simulated and experimental results agree satisfactorily.  相似文献   

9.
In this paper, a method for determining fireside heat flux, heat transfer coefficient on the inner surface and temperature of water-steam mixture in water-wall tubes is developed. The unknown parameters are estimated based on the temperature measurements at a few internal locations from the solution of the inverse heat conduction problem. The non-linear least squares problem is solved numerically using the Levenberg–Marquardt method. The diameter of the measuring tube can be larger than the water-wall tube diameter. The view factor defining the distribution of the heat flux on the measuring tube circumference was determined using exact analytical formulas and numerically using ANSYS software. The method developed can also be used for an assessment of scale deposition on the inner surfaces of the water-wall tubes or slagging on the fire side.  相似文献   

10.
In this paper, the rubber pad forming process is used to fabricate the metallic bipolar plate for a proton exchange membrane (PEM) fuel cell, which has multi-array micro-scale flow channels on its surface. The rubber pad forming process has the following advantages: high surface quality and dimensional accuracy of the formed parts, low cost of the die because only one rigid die is required, and high efficiency. The process control parameters (rubber hardness, internal and outer radii, draft angle) of the rubber pad forming are analyzed by the finite element method using the commercial software Abaqus. After that, the rubber pad forming process is used to manufacture a metallic bipolar plate of SS304 stainless steel with perfect flow micro-channels. The results of this effort indicated that the rubber pad forming process is a feasible technique for fabricating the bipolar plates of PEM fuel cells.  相似文献   

11.
In this paper, a method called “bipolar plate duct indentation” is introduced, in which some partial blocks (indents) are recommended to be placed along the fluid delivery channels being machined in bipolar plates (BPPs) of fuel cells (FCs). The indents are to enhance the over-rib convections and the kinetics of reactions in catalyst layers to improve the cell performance. As an initial step to numerically model this problem, a partially porous channel of BPP of a Direct Methanol FC (DMFC) is taken as the model geometry, and the level of heat exchange enhancement due to channel indentation is examined in this geometry. The performed parametric studies show that channel indentation enhances the heat exchange by 40%; with some minor increases in fluid delivery pumping power. From the analogy between the heat and mass transfer problems in dynamically similar problems, it is believed that the mass exchanges between the core channel and the catalyst layer in FC will enhance the same order as that in the pure heat transfer problem. The present work provides helpful guidelines to the bipolar plate manufactures of low-temperature FCs to considerably alleviate the losses on the side(s) of slow reaction electrodes.  相似文献   

12.
《Journal of power sources》2002,105(2):256-260
Metallic bipolar plates for Polymer electrolyte membrane (PEM) fuel cells with and without coatings were tested in single cell tests. Current–voltage curves, lifetime curves and the contamination with metal ions were measured. Additionally the surface of the plates was analyzed by several methods. So far the investigations revealed that principally stainless steel covered with a thin coating is suitable as material for bipolar plates in PEM fuel cells. Cell performance is the same as in PEM fuel cells with graphite bipolar plates. Concerning the cost it has to be considered that not only the material itself but also the coating process has to be evaluated.  相似文献   

13.
Polymer electrolyte fuel cell performance strongly depends on properties of the stack bipolar plates. Stainless steel, being an attractive material for bipolar plates, raises major concern as having a high contact resistance. It is assumed that most of this contact resistance is governed by electrical properties of the developed oxide surface film. Accurate consideration of existing data and measurements of mechanically treated stainless steel/carbon interface reveals a substantial influence of surface topography on the contact resistance. Contact resistance may change tenfold, depending on substrate surface treatment and roughness. A model describing carbon/stainless steel interface is introduced, explaining the observed behavior.  相似文献   

14.
In this paper, a compact 3 kW air-cooled fuel cell stack consists of 95 single cells with metallic bipolar plate is designed. Compared with graphite bipolar plates, metal stamping bipolar plates are lighter in weight, smaller in size and faster in heat conduction, therefore the transient behaviors of the voltage and temperature of each cell are analyzed. The results show that the heat distribution of the air-cooled fuel cell is very uniform, and the temperature difference between the inlet and outlet of cathode air of the fuel cell is lower than 15 °C. The individual cell voltage uniformity percentage variation value reaches 7% when the drop in the loading current is over 25 A. Moreover, the voltage uniformity variation value is higher than 4% when the loading current output exceeds 35A. Thus, a large drop in loading and a high loading current easily increase the voltage uniformity variation value. Long-term continuous operation has a negative influence on the performance of the stack, especially the last fuel cell near the anode outlet. Anode purging can effectively alleviate the uniformity percentage variation in the voltages. The designed air-cooled fuel cell exhibits good performance and strong environmental adaptability.  相似文献   

15.
In this work, a transient inverse problem of transpiration cooling is investigated in detail. The heat flux on the wall to be cooled is estimated by single point temperature measurement. The local thermal non-equilibrium (LTNE) model is utilized to describe the energy conservation of transpiration cooling process, and the conjugate gradient method (CGM) is extended to solve the inverse problem. The accuracy of the solutions of the inverse problem is examined through three given heat fluxes with given measurement errors. The examination shows that with the LTNE model and CGM, satisfactory solutions can be obtained. The influences of the variation in thermal properties, compressibility and the location of sensor on the accuracy of the solutions are analyzed. The analysis indicates that the variation in thermal properties and compressibility should be considered when a large temperature gradient exists, and the sensor location should be as close as possible to the hot wall. The inverse solutions obtained by the measurements of solid and fluid temperatures are compared. Through the comparison, it is found that using the solid temperature measurement as the input of the inverse problem is better than using the fluid temperature measurement.  相似文献   

16.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse heat conduction problem with a dual-phase-lag equation for estimating the unknown space- and time-dependent laser-induced heat generation in a gas-saturated porous medium exposed to short-pulse laser heating from the temperature measurements taken within the medium. Subsequently, the powder particle temperature distributions in the porous medium can be determined as well. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The effect of measurement errors on the estimation accuracy is also investigated. The inverse solutions are justified based on the numerical experiments in which two different forms of heat generation are estimated. Results show that the unknown laser-induced heat generation can be predicted precisely by using the present approach for the test cases considered in this study.  相似文献   

17.
Effects of a CrN/Cr coating layer on the durability of metal bipolar plates (stainless steel (STS) 430) are investigated in direct methanol fuel cells (DMFCs) with a fuel recirculation system, since under fuel recirculation the metal bipolar plates can be faced with a tougher corrosion environment. Before the fuel recirculation, the performance losses of the cells consisting of metal bipolar plates are ascribed to cathode degradation, due to a high corrosion level of the cathode side. However, after fuel recirculation, corrosion of the anode metal bipolar plate by pH decrease and overpotential increase brings about severe anode degradation. It is found that damage by corrosion of the cathode metal bipolar plate is limited to degradation of the cathode catalyst, whereas corrosion of the anode metal bipolar plate deteriorates not only the catalysts but also the electrolyte membrane. These durability tests show that the CrN/Cr coatings deposited on the STS 430 improve the corrosion resistance of the metal substrate and lead to low performance degradation.  相似文献   

18.
《Journal of power sources》1999,84(2):231-234
PEM fuel cells are viewed as one of the most environmentally friendly propulsion systems for automotive travel in the future. The PEM fuel cell is still too expensive for wide-spread commercialization. To achieve this cost target and at the same time meeting several technical requirements for mass production, a novel type of low-cost bipolar plates has been developed by SGL Technik GmbH. In this paper, test results of novel SGL bipolar plate materials concerning electrical conductivity (including material resistivity and contact resistances), corrosion, chemical compatibility, gas tightness and mechanical strength are presented. Based on the measurements of resistivity and cell performance, the investigated material appears to be a good choice for stable high performance PEMFC bipolar plates.  相似文献   

19.
Mohsen Alaeian 《传热工程》2017,38(18):1573-1594
The knowledge of tissues' properties and the noninvase monitoring of internal temperature are required in novel medical diagnostic and therapeutic techniques. For example, in the hyperthermia therapy of cancer, local heating must be accurately controlled in order to promote necrosis of the cancerous cells in thermoablation, or to induce apoptosis as an adjuvant treatment to chemotherapy or radiotherapy, without thermally affecting healthy cells. Photoacoustic imaging, also called optoacoustic imaging, is a new biomedical technique based on laser-generated ultrasound, which combines the high contrast of optical imaging with the high spatial resolution of ultrasound. Since parameters appearing in the mathematical formulation of the photoacoustic problem are temperature dependent, their estimation can be used as indirect temperature measurement. In the present work, sound speed, absorption coefficient, and a parameter that includes thermal expansion coefficient, laser energy density, and specific heat, are estimated through inverse analysis aiming at the identification of the tissue temperature. The forward problem is solved analytically using Laplace's transform, while the inverse problem is solved with a Markov chain Monte Carlo method within the Bayesian framework. Results obtained with simulated measurements reveal the capabilities of the proposed technique of parameter and temperature estimation.  相似文献   

20.
The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both the anode and cathode flow plates. The purpose of this study is to investigate the feasibility of the proposed temperature characterization method and to identify the temperature distribution on an operating HT-PEM in various modes of operation, including a 700 h sensors durability test. The embedded sensors showed minimal influence on cell performance, this difference seen in performance is believed to be caused by different bipolar plate materials. The measurement method is suitable for obtaining detailed data for validation of computational models, moreover the results indicate that the method can be used as a degradation tool, as it is possible to locate areas exposed to degradation, both in plane and between the anode and cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号