首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-supported Pt-Co alloy nanoparticles of varying Pt:Co atomic ratios of 1:1, 2:1, 3:1 and 4:1 are prepared, characterized and tested in high temperature PEM fuel cell intend to reduce the Pt loading. These electrocatalysts are prepared by borohydride reduction method in the presence of citric acid as stabilizing agent. Face-centered cubic structure of Pt is evident from XRD. The positive shift of Pt diffraction peaks with increasing cobalt content in the PtxCoy/C catalysts indicated the solubility of Co in Pt lattice. The average crystallite size is found to be 6 nm in all the prepared catalysts. The electrochemical active surface area (EAS) of the catalysts from CO-stripping voltammetry is calculated to be 65.2, 51.4, 47.7, 41.5 and 38.3 m2 g−1 Pt for Pt/C, Pt-Co(4:1)/C, Pt-Co(3:1)/C, Pt-Co(2:1)/C and Pt-Co(1:1)/C, respectively. These catalysts are used as cathode in the fabrication of polybenzimidazole-based membrane electrode assembly (MEA) and the polarization curves are recorded at 160 and 180 °C. The results indicate the good performance of Pt-Co alloys than that of Pt under the PEM fuel cell conditions. Among the investigated electrocatalysts, Pt-Co(1:1)/C and Pt-Co(2:1)/C exhibited good fuel cell performance. Durability tests also indicated the good stability of Pt-Co(1:1)/C and Pt-Co(2:1)/C compared to Pt/C.  相似文献   

2.
A new Aquivion™ E79-03S short-side chain perfluorosulfonic membrane with a thickness of 30 μm (dry form) and an equivalent weight (EW) of 790 g/equiv recently developed by Solvay-Solexis for high-temperature operation was tested in a pressurised (3 bar abs.) polymer electrolyte membrane (PEM) single cell at a temperature of 130 °C. For comparison, a standard Nafion™ membrane (EW 1100 g/equiv) of similar thickness (50 μm) was investigated under similar operating conditions. Both membranes were tested for high temperature operation in conjunction with an in-house prepared carbon supported Pt electrocatalyst. The electrocatalyst consisted of nanosized Pt particles (particle size ∼2 nm) dispersed on a high surface area carbon black. The electrochemical tests showed better performance for the Aquivion™ membrane as compared to Nafion™ with promising properties for high temperature PEM fuel cell applications. Beside the higher open circuit voltage and lower ohmic constraints, a higher electrocatalytic activity was observed at high temperature for the electrocatalyst-Aquivion™ ionomer interface indicating a better catalyst utilization.  相似文献   

3.
One key issue in high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) stack development is heat removal at the operating temperature of 140–180 °C. Conventionally, this process is done using coolants such as thermooil, steam or pressurized water. In this contribution, external liquid cooling designs are described, which are avoiding two constraints. First, in the cell active area, no liquid coolant is present avoiding any sealing problems with respect to the electrode. Secondly, the external positioning allows high temperature gradients between the heat removal zone and the active area resulting in a good adjustability of appropriate reformate conversion temperatures (e.g. 160 °C) and a more compact cell design. Different design concepts were investigated using modeling techniques and a selection of them has also been investigated experimentally. The experiments proved the feasibility of the external cooling design and showed that the temperature gradients within the active area are below 15 K under typical operating conditions.  相似文献   

4.
A carbon-supported Palladium electrocatalyst was investigated for oxygen reduction and hydrogen oxidation in a polymer electrolyte fuel cell operating at intermediate temperatures (80–110 °C) and with low relative humidity (33%). A 30% Pd/C was synthesized by a colloidal method and subsequent carbothermal reduction. A mean particle size of 4.0 nm and a homogeneous dispersion of Pd particles on the support were obtained. The performance of the Pd catalyst was compared to those obtained with a 50% Pt/C catalyst and a 50% Pt3Co1/C as anode and cathode, respectively. The Pd/C catalyst showed low overpotential for hydrogen oxidation whereas its performance as cathode was significantly lower than the benchmark Pt3Co1 catalyst. The main limiting effects for the Pd-based electrocatalyst appeared to be associated to a larger mean particle size compared to the benchmark Pt catalysts and to the modification of the carbon support during the synthesis procedure. These effects led to a stronger activation control, a slight increase of the series resistance and some diffusion constraints.  相似文献   

5.
Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400 W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different heating strategies and find a strategy suited for fast start-up of the HTPEM fuel cell stacks. Fast start-up of these high temperature systems enables use in a wide range of applications, such as automotive and auxiliary power units, where immediate system response is needed. The development of a dynamic model to simulate the temperature development of a fuel cell stack during heating can be used for assistance in system and control design. The heating strategies analyzed and tested reduced the start-up time of one of the fuel cell stacks from 1 h to about 6 min.  相似文献   

6.
Start-up time is one of the important factors that limit the application of high temperature polymer electrolyte fuel cells in several areas. Present work involves the analysis of different warm-up methodologies to analyse the start-up time for phosphoric acid doped PBI membrane based fuel cells. With this objective a number of three dimensional thermal models have been developed. Different heating methodologies such as reactant heating, coolant heating and combined heating (reactant and ohmic) are simulated. The ohmic heating is implemented for generating heat in the membrane itself at high current densities. Hence, combining it with other heating techniques is found effective in reducing start-up times significantly.  相似文献   

7.
The advanced electrochemical catalytic activity for oxygen reduction reaction (ORR) based on the octahedral Pt–Ni alloyed catalyst has been demonstrated. However, a means of fabricating catalyst electrodes for use in PEMFCs that is cost-effective, scalable, and maintains the high activity of Pt–Nialloy/C has remained out of reach. Electrophoretic deposition (EPD) is a colloidal production process that has a history of successful deployment at the industrial scale. Here, we report on the facile preparation of an effective and active cathode consisting of Pt–Ni alloy loaded on the carbon cloth substrate using the electrophoretic deposition (EPD) technique, in which the optimum applied voltages and suspension pH are systematically investigated to obtain the highly porous Pt–Nialloy/C catalyst electrode. In a half cell test, the EPD-made Pt–Nialloy/C catalyst electrodes fabricated at 45 V and in a solution with a pH of 9.0 yields the best performances. On the other, as an active cathode, the EPD-made Pt–Nialloy/C electrodes deliver a superior performance in single cell test, with the maximum power density reaches 7.16 W/mgPt, ~28.1% higher than that of the spray-made Pt/C conventional electrode. The outperformance is attributed to the significantly higher porosity and surface roughness of the EPD-made electrode.  相似文献   

8.
A high temperature polymer electrolyte membrane water electrolyser (PEMWE) was investigated at temperatures between 80 and 130 °C and pressures between 0.5 and 4 bar. Nanometer size Ru0.7Ir0.3O2 and Pt/C were employed as anode and cathode catalysts respectively. The catalyst coated on membrane (CCM) method was used to fabricate the membrane electrode assemblies. The membrane, oxygen evolution catalysts and MEAs were characterized with SEM, XRD and TEM. The influence of high temperature and pressure was investigated using in situ electrochemical measurements. Increasing temperature and pressure produced higher current densities for oxygen evolution, and smaller terminal voltages. The high temperature PEMWE achieved a voltage of 1.51 V at a current density of 1 A cm−2, at 130 °C and 4 bar pressure.  相似文献   

9.
Ex-situ electrochemical characterization techniques could significantly alter or misrepresent the materials of high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) to the point where they are not reflective of their conditions during operation, resulting in difficulties in obtaining realistic fuel cell durability. To minimize this disturbance, we proposed an in-situ low-invasive technique of electrochemical impedance spectroscopy (EIS), combining with polarization curve and Tafel slope analysis, to investigate the performance degradation of HT-PEMFC. The membrane electrode assemblies (MEAs) used in the HT-PEMFC were lab-made but with commercial catalyst and poly(2,5-benzimidazole) (ABPBI) membrane. Two common test modes, i.e. steady-state operation and dynamic-state operation, were employed to mimic practical HT-PEMFC operation. By examining the changes of electrochemical properties of the HT-PEMFC under steady- or dynamic-state operation, the main mechanism for the performance degradation can be determined. The results from the study suggests that a high cell performance decay rate cannot be directly attributed to materials degradation, especially in a short-term steady-state operation. In contrast, the change of Tafel slope can be seen as a clear indicator to determine the extent of catalyst degradation of HT-PEMFC, no matter which test protocol was applied. Post-analysis of TEM on the catalysts before and after tests further confirmed the main mechanism for the performance losses of the HT-PEMFCs underwent two test protocols, while acid loss and membrane degradation were considered to be negligible during the short-term tests.  相似文献   

10.
The Pt/graphene catalysts were prepared by using strong electrostatic adsorption (SEA) technique for polymer electrolyte membrane fuel cell (PEMFC). The pH shift was considered and the point of zero charge (PZC) of graphene was acquired at pH about 5.2. Due to the mid-to-low PZC, the cationic precursor (i.e., platinum tetra-ammine ([NH3)4 Pt]2+ or PTA) was chosen. After graphene surface was treated to be anionic substrate, the PTA was added and adsorbed onto the graphene by electrostatic force. Pt metals between before and after adsorption were determined by inductively coupled plasma spectroscopy (ICP) in order to consider Pt percent weight. After reduction in hydrogen environment, Pt/graphene catalysts were made. The second adsorption including the reduction was repeated in order to obtain the high Pt percentage such as 21.5%wt. The average particle sizes (ca. 2.2 nm) and distribution of Pt were inspected using transmission electron microscopy (TEM), where the crystalline structures were verified by X-Ray diffraction (XRD). Electrochemical properties were tested using cyclic voltammetry (CV) and the accelerated durability test (ADT) was also carried out. The oxygen reduction reaction (ORR) was also carried out, where the specific activity and mass activity were examined. It was observed from ADT that mass activity lost about 33%. Furthermore, the ORR was performed to verify the first order reaction, as well as to determine the mechanism path way for four electron transfer. Moreover, the kinetic constant of the ORR was also estimated.  相似文献   

11.
To improve fuel cell design and performance, research studies supported by a wide variety of physical and electrochemical methods have to be carried out. Among the different techniques, current distribution measurement owns the desired feature that can be performed during operation, revealing information about internal phenomena when the fuel cell is working. Moreover, short durability is one of the main problems that is hindering fuel cell wide implementation and it is known to be related to current density heterogeneities over the electrode surface. A good flow channel geometry design can favor a uniform current density profile, hence hypothetically extending fuel cell life. With this, it was thought that a study on the influence of flow channel geometry on the performance of a high temperature polymer electrolyte membrane (PEM) fuel cell using current distribution measurement should be a very solid work to optimize flow field design. Results demonstrate that the 4 step serpentine and pin-type geometries distribute the reactants more effectively, obtaining a relatively flat current density map at higher current densities than parallel or interdigitated ones and yielding maximum powers up to 25% higher when using oxygen as comburent. If air is the oxidant chosen, interdigitated flow channels perform almost as well as serpentine or pin-type due to that the flow conditions are very important for this geometry.  相似文献   

12.
High temperature PEM fuel cells   总被引:14,自引:0,他引:14  
There are several compelling technological and commercial reasons for operating H2/air PEM fuel cells at temperatures above 100 °C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances.

HT-membrane development accounts for 90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation.  相似文献   


13.
The performance of an ABPBI-based High Temperature H2/O2 PEMFC system was studied under different experimental conditions. Increasing the temperature from 130 to 170 °C improved the cell performance, even though further increase was not beneficial for the system. Humidification of the H2 stream ameliorated this behaviour, even though operating above 170 °C is not advisable in terms of cell performance. A significant electrolyte dehydration seems to negatively affect the fuel cell performance, especially in the case of the anode. In the presence of 2% vol. CO in the H2 stream, the temperature exerted a positive effect on the cell performance, reducing the strong adsorption of this poison on the platinum sites. Moreover, humidification of the H2 + CO stream increased the maximum power densities of the cell, further alleviating the CO poisoning effects. Actual CO–O2 fuel cell results confirmed the significant beneficial effect of the relative humidity on the kinetics of the CO oxidation process.  相似文献   

14.
Fuel Cell operation at high temperature (e.g. 120 °C) and low relative humidity (e.g. 50%) remains challenging due to creep (in the case of Nafion®) and membrane dehydration. We approached this problem by filling PES 70, a sulfonated poly(ether sulfone) with a Tg of 235 ± 5 °C and a theoretical IEC of 1.68 mmol g−1, with 5-20% silica nano particles of 7 nm diameter and 390 ± 40 m2 g−1 surface area. While simple stirring of particles and polymer solutions led to hazy, strongly anisotropic (air/glass side) and sometimes irregular shaped membranes, good membranes were obtained by ball milling. SEM analysis showed reduced anisotropy and TEM analysis proved that the nanoparticles are well embedded in the polymer matrix. The separation length between the ion-rich domains was determined by SAXS to be 2.8, 2.9 and 3.0 nm for PES 70, PES 70-S05 and Nafion® NRE 212, respectively. Tensile strength and Young’s modulus increase with the amount of silica. Ex-situ in-plane proton conductivity showed a maximum for PES 70-S05 (2 mS cm−1). In the fuel cell (H2/air, 120 °C, <50%), it showed a current density of 173 mA cm−2 at 0.7 V, which is 3.4 times higher than for PES 70.  相似文献   

15.
A polytetrafluoroethylene (PTFE)/quaternized polysulfone (QNPSU) composite membrane has been fabricated for use in proton exchange membrane fuel cells (PEMFCs). The composite membrane is made by immobilizing a QNPSU solution into a hydrophobic porous PTFE membrane. The structure of the composite membrane is examined by SEM and EDX. The ionic conductivity of the PTFE/QNPSU membrane, at a relative humidity lower than 0.5% and a temperature of 180 °C, is greater than 0.3 S cm−1, when loaded with 400% H3PO4. A hydrogen fuel cell with this membrane operating at 2.0 atmosphere absolute (atma) pressure and 175 °C gives voltages >0.4 V at current densities of 1.0 A cm−2 using oxygen.  相似文献   

16.
Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in order to help them to elucidate the processes within the cells, by allowing optimization of materials, cells, stacks, and systems and support control systems. In this work three types of neural networks, that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), have been designed to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of 100-175 °C. The influence of temperature of two periods was studied: the temperature in the conditioning period and temperature when the fuel cell was operating. Three inputs variables: the conditioning temperature, the operating temperature and current density were taken into account in order to evaluate their influence upon the potential, the cathode resistance and the ohmic resistance. The Multilayer Perceptron model provides good predictions for different values of operating temperatures and potential and, hence, it is the best choice among the study models, recommended to investigate the influence of process variables of PEMFCs.  相似文献   

17.
This paper analyzes the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC) at varying temperatures, ranging from 140 °C to 180 °C. For the study, a H3PO4 – doped polybenzimidazole (PBI) – based membrane electrode assembly (MEA) of 45 cm2 active surface area from BASF was employed. The study showed overall negligible effects of methanol-water vapor mixture slips on performance, even at relatively low simulated steam methanol reforming conversion of 90%, which corresponds to 3% methanol vapor by volume in the anode gas feed. Temperature on the other hand has significant impact on the performance of an HT-PEMFC. To assess the effects of methanol-water vapor mixture alone, CO2 and CO are not considered in these tests. The analysis is based on polarization curves and impedance spectra registered for all the test points. After the performance tests, endurance test was performed for 100 h at 90% methanol conversion and an overall degradation rate of −55 μV/h was recorded.  相似文献   

18.
Sulfonic acid groups were grafted onto the surface of carbon-nanotube supported platinum (Pt/CNT) catalysts to increase platinum utilization in polymer electrolyte fuel cells (PEFCs) by both thermal decomposition of ammonium sulfate and in situ radical polymerization of 4-styrenesulfonate. The resultant sulfonated Pt/CNT catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometry, thermal gravimetric analysis (TGA) and electrochemical methods. The electrodes with the Pt/CNT catalysts sulfonated by the in situ radical polymerization of 4-styrenesulfonate exhibited better performance than did those with the unsulfonated counterparts, mainly because of the easier access with protons and well dispersed distribution of the sulfonated Pt/CNT catalysts, indicating that sulfonation is an efficient approach to improve performance and reduce cost for the Pt/CNT-based PEFCs. The electrodes with the Pt/CNT catalysts sulfonated by the thermal decomposition of ammonium sulfate, however, did not yield the expected performance as in the case of carbon black supported platinum (Pt/C) catalysts, probably due to the significant agglomeration of platinum particles on the CNT surface at high temperatures, indicating that the Pt/CNT catalysts are more sensitive to temperature than the Pt/C catalysts.  相似文献   

19.
A comparative study of four different high temperature polymer electrolyte membrane fuel cell (HT-PEFC) polybenzimidazole (PBI) based membrane electrode assemblies (MEAs) is undertaken utilizing the design of experiments (DOE) method, a very valuable statistical optimization method, much underutilized in fuel cell research. Single cell voltages are examined as a response (target variable) at two levels (high and low) of four factors (controlled variables); anode and cathode stoichiometry, operating temperature and current density. This yields a two-level, four factor (24) full factorial DOE. The data is used to form a linear regression model for each MEA, which is in turn utilized to predict the cell voltage at random values within the selected ranges of the four factors for validation. The main effects and two factor interactions of each factor are compared to determine their effect on the cell voltage and the underlying physics is examined to determine the best performing MEAs. The PBI based MEA has a much higher tolerance to carbon monoxide (CO) in the fuel stream in comparison with Nafion based MEAs due to the different proton conducting mechanism as well as a higher operating temperature, thus enabling reliable operation of HT-PEFC stacks with reformate containing upto 3% CO.  相似文献   

20.
Phosphoric acid used as a proton-conductive medium in high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) poisons the Pt surface and prevents oxygen transport in the cathode catalyst layer. The hydrophobic binders in the catalyst not only maintain the catalyst layer structure but also control the phosphoric acid distribution. In this study, polytetrafluoroethylene (PTFE)/carbon black (Vulcan XC-72R) added to the catalyst layer generates an oxygen transport channel. The catalyst layers coated on the gas diffusion layer by the bar-coating method serve as the cathode. High PTFE content causes hydrophobicity in the catalyst layer. The membrane electrode assembly (MEA) with 6 wt% PTFE/Vulcan results in the highest peak power density (0.347 W cm−2) and voltage (0.653 V) at 0.2 A cm−2. A critical reason for its high performance is having the lowest Rct + Rmt values measured at 0.6 V and 0.4 V. These results could contribute to improving the MEA performance for HT-PEMFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号