首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The significance of high hydrostatic pressure (HHP) processing on the physico-chemical—techno-functional and firming kinetics—parameters and nutritional properties—nutritional composition and “in vitro” starch digestibility—of highly replaced wheat flour breads by chickpea, pea and soybean flours was investigated, and the power/effectiveness of HHP in partially replacing structural agents (gluten and/or hydrocolloids) was discussed. Incorporation of pressured legume slurries (350 MPa, 10 min) at 42% of wheat replacement into bread formulation provoked a general increase in initial crumb hardness and browning of the crust with a concomitant explicit reduction of moisture, whiteness of the crumb and bread specific volume, but a slower in vitro starch digestibility with prominent formation of slowly digestible starch and resistant starch, compared to their counterparts prepared by using a conventional gluten/carboxymethyl cellulose (CMC)-added breadmaking recipe/process. Pressured breads with no gluten but 3% CMC in the formulation kept higher sensory ratings, softer initial texture and lower firming profiles on ageing than pressured breads with no gluten nor CMC. HHP has proven to be an effective technology to partially replace structuring agents (CMC and/or gluten) in high-legume wheat-based matrices providing sensorially acceptable breads with medium physico-chemical quality profile but enhanced formation of nutritionally relevant starch fractions and slower crumb firming kinetics on ageing.  相似文献   

2.
The ability of high β-glucan barley (HBGB) flour versus regular commercial barley (CB) to make highly nutritious wheat (WT) blended breads meeting functional and sensory standards has been investigated. Mixed breads obtained by 40 % replacement of WT flour by HBGB flours are more nutritious than those replaced by CB flours and much more than regular WT flour breads in terms of elevated levels of dietary fibre fractions (soluble, insoluble, resistant starch and β-glucans), slowly digestible starch subfraction and bioaccessible polyphenols providing higher antiradical activity. WT/CB and WT/HBGB breads can be, respectively, labelled as source of fibre (3 g DF/100 g food) and high-fibre breads (6 g DF/100 g food), according to Nutritional Claims for dietary fibre foods. The consumption of 100 g of WT/HBGB can meet up to almost 50 % the required dietary fibre, providing a β-glucan intake high enough to meet the requirements of the EFSA health claim (3 g/day), contributing a reduced blood cholesterol level. The techno-functional performance of fresh blended breads and the sensory appreciation were in general preserved or even improved.  相似文献   

3.
Different sieve particle sizes P1 (Whole), P2 (≤0.212 mm) and P3 (≤0.125 mm) of water chestnut flour (WCF) were studied for proximate composition, mineral content, physico-chemical, functional, pasting and antioxidant properties in comparison to refined wheat flour (WF). WCF had significantly higher levels of fiber, resistant starch, mineral (K, Mg, Zn, and Cu), phenolics and flavonoids than WF in the order (P1?>?P2?>?P3?>?WF). Increase in flour fineness decreased antioxidant activity (P1?>?P2?>?P3) with P1 having highest phenolic (4.72 mg GAE/g), flavonoid (2.46 mg QE/g) content. Pasting properties of P1 were significantly lower than WF but significantly increased with increase in flour fineness. Quality of flat bread produced from WCF-WF blends significantly varied with particle size and blending. Bake loss and baking time significantly decreased while shrinkage increased with decrease in particle size. L* value decreased with blending but showed an irregular trend with variation in particle size. (WF?>?P2?≥?P3?>?P1). Baking decreased DPPH scavenging activity more in WF bread (46.68%) than WCF bread (P1?=?17.71%, P2?=?16.45%, P3?=?19.63%). Baking decreased total phenolic and flavonoid content by 49 and 20% in wheat & 38 and 16% in WCF respectively while significantly increased the resistant starch content in the order (P3?>?P2?>?P1?>?WF). This shows better retention of antioxidant activities and greater stability of WCF phenolics than WF phenolics during baking. Sensory analysis showed WCF breads had fair acceptability due to their characteristic flavor. Thus, gluten free WCF bread is also antioxidant rich with ample resistant starch content than WF breads.  相似文献   

4.
The effect of different enriched fibre products obtained from butternut (Cucurbita moschata Duchesne ex Poiret) on bread making and bread quality was evaluated through the study of bread yield, quality parameters (specific volume, crumb firmness, crumb and crust colour) and bread shelf life. Fractions tested were obtained from butternut mesocarp through ethanolic treatment (fraction AIR) or through dehydration (fraction S) or from the ethanolic treatment of peel (fraction C). These fractions were incorporated in a bread formula, at levels of 5, 10 and 15 g of fibre fraction per kilogram of wheat flour. The study of crumb through digital imaging and thermal analysis was also performed in order to better understand the effects observed. An important influence of water absorption kinetics and chemical composition of the fibre fractions studied was observed in the results obtained. Lower bread firmness was determined 24 h after baking when 10 g of C or either 10 or 15 g of S was present per kilogram of wheat flour used. Breads made with flour containing 10–15 g of S or 5 g of C per kilogram of wheat flour tended to be softer, while 10 g of C per kilogram of flour produced significantly softer breads along 9 days storage.  相似文献   

5.
Wheat flour (WF) flat bread was prepared with varying levels of wholegrain “white” sorghum flour (WSF) or “red” sorghum flour (RSF). Farinograph dough rheology indicated reduced water absorption and stability time and increased breakdown with increased sorghum flour addition. The total phenolic content and antioxidant capacity of the 40% RSF flat bread >40% WSF flat bread > control (100% WF) flat bread. The rapidly digestible starch (RDS) level was lower in the 40% WSF and 40% RSF flat breads than the control (100% WF). Hedonic sensory evaluation indicated that sorghum addition did not reduce the sensory preference for the flat breads. Human clinical studies are now required to determine if the lower levels of RDS and higher antioxidants observed in the sorghum containing flat breads translate into beneficial low glycemic index and reduced oxidative stress in vivo.  相似文献   

6.
Many different raw materials have been proposed for producing nutritious gluten-free breads, but rarely, there is a parallel analysis of the effect of physical treatment on those ingredients. The aim of this study was to incorporate carob flour fractions of varying particle size on rice gluten-free breads prepared with carob/rice (15:85) flour blends. Carob flour particle size was controlled by fractionation or jet milling application. Quality features of gluten-free breads containing carob flour and commercially available gluten-free breads were compared. Carob flour addition led to breads with improved colour parameters, crumb structure, retarded firming and lower moisture loss compared to rice bread. Further improvement in specific volume, crumb hardness, protein and ash content and estimated glycaemic index (eGI) could be obtained by a careful selection of the particle size distribution of the carob flour. Carob breads prepared either with the coarsest or the finest fraction prepared using jet milling led to end products with the highest specific volume (≈2.2 g/cm3) and the lowest crumb hardness (≈5.5 N), although they had lower specific volume and harder crumbs than breads from commercial blends (≈3–4 g/cm3, 0.6–3.8 N). Nevertheless, rice-based bread made with the finest carob flour was superior considering its slower firming, protein content and lower eGI. The incorporation of carob flour obtained by jet milling in rice-based gluten-free breads led to end products with quality characteristics and sensory acceptance resembling commercial breads and high nutritional value.  相似文献   

7.
D. Sabanis 《LWT》2009,42(8):1380-1389
The enrichment of gluten-free baked products with dietary fibre seems to be necessary since it has been reported that coeliac patients have generally a low intake of fibre due to their gluten-free diet. In the present study different cereal fibres (wheat, maize, oat and barley) were added at 3, 6 and 9 g/100 g level into a gluten-free bread formulation based on corn starch, rice flour and hydroxypropyl methyl cellulose (HPMC). Doughs were evaluated based on consistency, viscosity and thermal properties. Results showed that maize and oat fibre can be added to gluten-free bread with positive impact on bread nutritional and sensory properties. All breads with 9 g/100 g fibre increased the fibre content of control by 218%, but they were rated lower than those with 3 and 6 g/100 g fibre due to their powdery taste. The formulation containing barley fibre produced loaves that had more intense color and volume comparable to the control. During storage of breads a reduction in crumb moisture content and an increase in firmness were observed. The micrographs of the crumb showed the continuous matrix between starch and maize and/or oat fibre obtaining a more aerated structure.  相似文献   

8.
Gluten free bread from rice flour substituted with carob flour and resistant starch (RS) was investigated. RS and protein amount added were optimized in model gluten free breads (MGFB's) containing rice flour using Response Surface Methodology (RSM). RS addition did not influence MGFB's crumb firmness, but it acted as an elastifying agent. A MGFB with soft and elastic crumb was produced with 10 g protein/100 g flour and 15 g RS/100 g flour. MGFB recipe was further improved by adding carob flour. Its addition raises the water content needed for the breadmaking procedure, but did not significantly affect any of the textural and structural parameters measured. Water amount increase diminished crumb firmness and contributed to the development of an open crumb cell structure. The design allowed the determination of the optimum formulation for obtaining gluten-free bread with low crumb firmness and improved porosity values by combining 15 g carob flour/100 g flour, 15 g RS/ 100 g flour, 10 g protein/ 100 g flour and 140 g water/ 100 g flour. The use of carob flour and RS constitutes a promising approach in producing fibre-rich formulations of high quality characteristics in order to fulfil population deficiency of dietary fibre intake.  相似文献   

9.
Alessandro Angioloni 《LWT》2011,44(3):747-758
The influence of some physicochemical properties (chemical and nutritional composition, particle size, colour, dynamic viscosity, viscoelastic moduli) of associated binary mixtures of structuring hydrocolloids (cellulose derivatives, galactomannans) and prebiotic oligosaccharides (fructo- and gluco-oligosaccharides) in diluted hydrated wheat flour matrixes is discussed in terms of nutritional (higher resistant starch, lower digestible starch and lower in vitro Glycaemic Index) and technological functional profiles (higher sensory scores and longer keepability) of reduced-caloric density (−20%) high-fibre (>6 g/100 g) breads. Few technological functional (sensory firmness and overall acceptability) and most nutritional bread properties (protein digestibility, rapidly digestible starch, slowly digestible starch, in vitro expected Glycaemic Index, total digestible starch and resistant starch) were found to depend on dietary fibre molecular characteristics (mean particle diameter (D[4, 3]), storage modulus (G′), loss modulus (G″), complex viscosity (η*), and lactic acid solvent retention capacity. Dietary fibres with larger particle size resulted in highly sensory acceptable breads with higher amounts of resistant starch and slightly lower protein digestibility. Fibres exhibiting high viscoelasticity -G′, G″- and complex viscosity -η*- in concentrated solutions yielded breads with better sensory perception, lower digestible starch and higher resistant starch contents bringing to lower in vitro expected Glycaemic Index.  相似文献   

10.
Sourdoughs were produced from buckwheat, oat, quinoa, sorghum, teff and wheat flour using the heterofermentative lactic acid bacteria Lactobacillus plantarum FST 1.7 and added to a basic bread formulation of flour from the same grain type (20 % addition level). Dough rheology, textural (crumb hardness, specific volume) and structural bread characteristics (crumb porosity, cell volume, brightness) of sourdough-containing breads were compared to non-sourdough-containing breads (control). Changes in protein profiles as analysed with capillary electrophoresis were observed in all sourdoughs. Furthermore, sourdough addition led to decreased dough strength resulting in softer dough. No influences on specific volume and hardness on day of baking were found for gluten-free sourdough breads. The staling rate was reduced in buckwheat (from 8 ± 2 to 6 ± 2 N/day) and teff sourdough bread (13 ± 1 to 10 ± 4 N/day), however, not significantly in comparison with the control breads. On the contrary, in wheat sourdough bread, the staling rate was significantly reduced (2 ± 1 N/day) in comparison with control bread (5 ± 1 N/day). Sourdough addition increased the cell volume significantly in sorghum (+61 %), teff (+92 %) and wheat sourdough breads (+78 %). Therefore, crumb porosity was significantly increased in all gluten-free and wheat sourdough breads. Shelf life for sourdough breads was one (teff and oat), two (buckwheat, quinoa and sorghum) and 3 days (wheat) and was not prolonged by sourdough addition. The inferior aroma of breads prepared from the gluten-free flours was also not improved by sourdough addition.  相似文献   

11.
Resistant starch can be used to reduce the availability of carbohydrates in baked products. In this study, the effect of type 4 resistant wheat starch (RS4) on wheat flour dough and breads was evaluated. Wheat flour was substituted by RS4 at 10%, 20% and 30% w/w (RS10, RS20 and RS30, respectively). Rheological and thermal behaviours of dough were evaluated. Besides, bread quality, starch digestibility and bread staling were analysed. All substituted dough exhibited viscoelastic behaviour but lower elastic and viscous moduli. Regarding to bread quality, specific volume and crumb texture were negatively affected in samples with RS4. However, all samples were technologically acceptable. During storage, crumb hardening was observed in breads without and with RS4 but amylopectin retrogradation was not particularly affected. The in vitro digestibility of bread with RS showed a lower release of reducing sugars and a lower estimated glycaemic index, suggesting a healthier profile for these breads.  相似文献   

12.
The impact of heat moisture treatment (HMT) of flours on the techno-functional and nutritional patterns of binary flour bread matrices (wheat/barley, WT/CB, 60:40, w/w) was investigated in untreated (?) and HMT (+) samples made at 160 and 170 dough yield (DY) levels. Assessment was performed by determining viscoelastic (stress relaxation test) and mechanical (double compression test) behaviours, volume (seed displacement), colour (Photoshop system), crumb grain (digital image analysis), starch digestibility (enzyme hydrolysis) and staling kinetics (Avrami equation), bioaccessible polyphenol content (digestive enzymatic mild extraction) and anti-radical activity (DPPH●). A superior functional profile was provided by HMT of CB flour in the blend WT?CB+ when hydrated at DY 170 compared to the untreated control WT?CB?. The sample exhibited a similar specific volume, more cohesive, springier, more resilient crumb, with similar rate and extent of crumb firming on ageing, and similar colour pattern but finer and more uniformly sized cell structure, and deserved similar sensory ratings as the control WT?CB? concerning cell uniformity, smoothness and typical smell and taste. Digestible starch kinetic curves of blended breads pointed out samples WT?CB+ and WT+CB+ as matrices expliciting a lower degree and slower rate of starch hydrolysis when mixed at low and high DY, respectively. A similar anti-radical activity for composite bread matrices was evidenced regardless of either HMT or DY.  相似文献   

13.
The impact of addition of gelatinized rice porridge to bread has been investigated on loaf volume, viscoelastic properties and air-bubble structure. We prepared four variety of bread: bread containing rice porridge (rice porridge bread), bread containing gelatinized rice flour (gelatinized rice flour bread), and wheat flour and rice flour breads for references. Instrumental analyses the bread samples were carried out by volume measurement of loaf samples, creep test and digital image analysis of crumb samples. Rice porridge bread showed the maximum specific volume of 4.51 cm3/g, and even gelatinized rice flour bread showed 4.30 cm3/g, which was larger than the reference bread samples (wheat and rice flour breads). The values of viscoelastic moduli of gelatinized rice flour bread and rice porridge bread were significantly smaller (p < 0.05) than those of wheat flour and rice flour breads, which indicates addition of gelatinized rice flour or rice porridge to bread dough encouraged breads softer. Bubble parameters such as mean air- bubble area, number of air-bubble, air-bubble area ratio (ratio of bubble area to whole area) were not significantly different among the bread crumb samples. Therefore, the bubble structures of the bread samples seemed to similar, which implied that difference of viscoelasticity was attributed to air-bubble wall (solid phase of bread crumb) rather than air-bubble. This study showed that addition of gelatinized rice to bread dough makes the bread with larger loaf volume and soft texture without additional agents such as gluten.  相似文献   

14.
Gluten free (GF) breads require a gluten replacement to provide structure and gas retaining properties in the dough and mimic the viscoelastic properties of gluten. Hydroxypropylmethylcellulose (HPMC), which forms thermoreversible gel networks on heating had proved the most effective in structuring baked products. Response surface methodology was used to optimize a GF bread formulation based on ingredients such as maize starch and rice flour, which are naturally GF. (HPMC) and water (W) were the predictor variables (factors) and loaf specific volume, crumb firmness, and overall acceptability were the dependent variables (responses) used to assess the product quality. The optimal formulation, determined from the data, contained 1.5 kg/100 kg HPMC and 88.7 kg/100 kg Water, corn starch-rice flour blend basis (sfb). The developed mathematical models for the measured responses could be successfully used for their prediction during baking. Shelf life study of the optimized formulation revealed that bread stored under modified atmosphere packaging (MAP) exhibited lower crumb firmness and moisture content values, thus remained softer through storage. Scanning electron microscopy of the crumb showed continuum matrix between starch and HPMC, in the optimized formulation, obtaining a more aerated structure.  相似文献   

15.
Resistant starches (RS) are important functional fibers with high potential for the development of healthy foods. The technological, nutritional, and commercial possibilities of introducing type 2 RS in white breads were studied. Four levels of maize RS (HM) as wheat flour replacement were evaluated: 0%, 10%, 20%, and 30% (control, HM10, HM20, and HM30, respectively). Thermal transitions experiments were assessed on doughs prior to breadmaking. The bread quality was studied by specific volume, color of crust and crumb, porosity, and texture of the crumb. The microstructure of the crumb was analyzed by environmental scanning electron microscopy (ESEM). Proximate composition and in vitro starch digestibility were performed to characterize the nutritional profile of breads and estimate the glycemic index (GI). Consumer acceptability of breads was also evaluated. Breads with HM showed great performance up to 20% replacement in the specific volume, the crumb porosity, and the texture. Replacement up to 30% caused major damage to those parameters. Differential scanning calorimetry runs demonstrated that HM starch did not gelatinize under the baking conditions, as confirmed by ESEM. The presence of increasing levels of native starch is thought to have the greatest influence on reducing the crust browning, increasing the crumblier texture and decreasing starch digestibility. With respect to the control, a high and progressive reduction in the estimated GI and an outstanding increase of fiber with increasing levels of HM were found. The sensory evaluation of HM20 bread showed that this level of substitution has great consumer acceptance, giving it the chance to become a healthy substitute of white bread.  相似文献   

16.
A gluten-free wheat bread replacement was developed from rice flour (80%) and potato starch (20%). Using objective measurements as responses, response surface methodology was utilized to find carboxymethylcellulose (CMC)-hydroxypropylmethylcellulose (HPMC)-water combinations which could successfully replace gluten in the rice flour yeast breads from each of three rice flours. CMC and water had the greatest effect on the responses measured; HPMC had the least. Rice bread formulations were found that resulted in breads which met wheat (white) bread reference standards for specific volume, crumb and crust color, Instron firmness and % moisture.  相似文献   

17.
Yeast breads were developed from rice flour (80%) and potato starch (20%). Using sensory measurement from a trained panel, response surface methodology (RSM) was applied to find carboxymethylcel-lulose (CMC), hydroxypropylmethylcellulose (HPMC), and water level combinations for gluten-free breads from three different rice flours. Formulations resulted in rice breads that met wheat bread reference standards for moistness, cohesiveness, yeasty flavor, adhesiveness, aftertaste, top crust and crumb color, cell size uniformity and predominant cell size. Medium grain rice flour breads met more sensory reference standards than long grain rice flour breads.  相似文献   

18.
Samples of 12 hard winter wheats and their flours that produced breads varying in crumb grain scores were studied for 38 quality parameters including: wheat physical and chemical characteristics; flour ash and protein contents, starch damage, swelling power, pasting characteristics, and flour particle size distribution; dough properties determined by a mixograph; and breadmaking properties for pup loaves (100g flour). Only two parameters, the protein content of wheat and the granulation of flour, showed significant correlations with bread crumb grain scores. Protein content of wheat ranging 12.9%- 14.5% determined by an NIR method showed a weak inverse relationship (r =-0.61, p〈0.05) with bread crumb grain score. Flour particle size distribution measured by both Alpine Air Jet Sieve and NIR methods revealed that the weight wt % of particles less than 38 μ m in size and representing 9.6% - 19.3 % of the flour weights was correlated positively (r =0.78, p 〈 0.01) with crumb grain score, whereas wt % of flour particles larger than 125μm had an inverse relationship (r =-0.60, p〈0.05) with crumb grain score.  相似文献   

19.
Gluten-free sorghum bread was made from cassava, maize, potato or rice starch and sorghum in the ratios 10:90, 20:80, 30:70, 40:60 and 50:50. The other baking ingredients, on flour-weight-basis, were water (100%), sugar (6.7%), egg white powder (6%), fat (2%), salt (1.7%) and yeast (1.5%). Increasing starch content changed the batters’ consistencies from soft doughs to thin pourable batters. Increasing starch content decreased crumb firmness and chewiness, and increased cohesiveness, springiness and resilience of all breads. Cassava-sorghum and rice-sorghum breads had better crumb properties than maize-sorghum or potato-sorghum breads. Although the crumb properties of all breads declined (i.e. firmness and chewiness increased; cohesiveness, resilience and springiness decreased) on storage, the formulation containing 50% cassava starch retained the best overall texture.  相似文献   

20.
Sixteen Australian hard and soft wheats and two U.S. hard wheats were milled into flours (break and reduction) for preparation of steamed breads. Chemical composition and rheological properties of the flour were determined. Steamed breads were analyzed for carbohydrate digestibility and resistant starch. There was no relationship between flour type, protein content and specific volume of steamed breads. Carbohydrate digestibility of steamed breads from soft wheat flour was higher than that of breads from hard wheat flour. Reduction flours produced steamed breads with higher carbohydrate digestibility than break flours. Resistant starch was higher in steamed breads from soft wheat flours than in those from hard wheat flours. Reduction flour produced higher resistant starch levels than break flours. Commercial white bread had resistant starch levels similar to those of steamed breads from soft wheat flour and hard wheat reduction flour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号