首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inactivation of pectin methylesterase (PME) in pineapple puree was studied within the domain of 0.1–600 MPa/30–70 °C/1 s–40 min. The combined effect of pressure-build up and decompression, as characterized by pulse inactivation (PI value), was modeled by the artificial neural network (ANN) through a tan-sigmoidal function of target pressure, target temperature, compression, and decompression time. Besides, nth order kinetic model was fitted during the isobaric-isothermal hold period. The extent of pulse inactivation of PME ranged from 15% (200 MPa/30 °C) to 67% (600 MPa/70 °C) and it increased at a higher temperature and/or pressure. The inactivation orders (n) during thermal (0.1 MPa/30–70 °C) and high pressure (100–600 MPa/30–70 °C) treatments were 1.15 and 1.3, respectively. The rate constant (k) ranged within 4.0 to 71.2 × 10−3 Un−1·min−1. A nonlinear model considering the pressure dependency of activation energy, and temperature dependency of activation volume was developed which adequately described the inactivation behavior of PME within the domain.Industrial relevancePectin methylesterase (PME) in the pineapple puree results in a product with a modified texture and consistency that is usually not entertained by the consumer. Therefore, pineapple puree has to be processed to inactivate PME to avoid the cloud loss. Now-a-days, high-pressure processing is being used for fruit products to retain the heat sensitive nutrients. In this sense, a model capable of predicting the exact inactivation behavior of PME during the treatment is very much obligatory for process design. This combined model developed in the study will help the food industry to come-up with the exact pressure-temperature-holding time combination achieving a certain degree of PME inactivation.  相似文献   

2.
Polyphenol oxidase (PPO) from pear was characterized with catechol as substrate. The Michaelis constant of soluble and membrane-bound PPO were 15.6 and 23.8 mM, respectively, and their optimum pH for activity were 6.0 and 6.5, respectively. The inactivation kinetics of soluble and membrane-bound PPO during thermal (45–75 °C) and high-pressure thermal processing (600 MPa, 40–80 °C) were studied. The inactivation kinetics of pear PPO were described by a first-order model at all processing conditions. Compared to soluble PPO, membrane-bound PPO was more sensitive to thermal and high-pressure inactivation. Both soluble and membrane-bound PPO displayed higher sensitivity towards thermal inactivation at pH 3.5 (pH of pear puree made from pears dipped in citric acid prior to blending) compared to pH 4.4 (pH of non-acidified pear puree). High pressure and temperature had synergistic inactivation effects on pear PPO at pH 4.4 while slight antagonistic effects were observed at pH 3.5.  相似文献   

3.
The high‐pressure processing conditions were optimized for pineapple puree within the domain of 400‐600 MPa, 40‐60 °C, and 10‐20 min using the response surface methodology (RSM). The target was to maximize the inactivation of polyphenoloxidase (PPO) along with a minimal loss in beneficial bromelain (BRM) activity, ascorbic acid (AA) content, antioxidant capacity, and color in the sample. The optimum condition was 600 MPa, 50 °C, and 13 min, having the highest desirability of 0.604, which resulted in 44% PPO and 47% BRM activities. However, 93% antioxidant activity and 85% AA were retained in optimized sample with a total color change (?E*) value less than 2.5. A 10‐fold reduction in PPO activity was obtained at 600 MPa/70 °C/20 min; however, the thermal degradation of nutrients was severe at this condition. Fuzzy mathematical approach confirmed that sensory acceptance of the optimized sample was close to the fresh sample; whereas, the thermally pasteurized sample (treated at 0.1 MPa, 95 °C for 12 min) had the least sensory score as compared to others.  相似文献   

4.
This work focused on a litchi-based mixed fruit beverage, comprising of coconut water and lemon juice, mixed in an optimized proportion. Based on preliminary studies, three resistant spoilage enzymes were identified in the beverage, viz. polyphenol oxidase (PPO), peroxidase (POD), and pectin methyl esterase (PME). The response surface methodology (RSM) based on central composite face-centered design (FCCD) screened out PPO as the most resistant enzyme within the high pressure processing (HPP) domain of 200–600 MPa/30–70 °C/0–20 min. A detailed kinetic study was conducted on PPO inactivation within the same HPP domain along with a set of thermal treatments (0.1 MPa/30–70 °C). A synergistic effect of pressure and temperature on PPO inactivation was observed, throughout the HPP domain. However, PPO was almost completely inactivated at 500 MPa/70 °C/20 min. The inactivation order (n) values for PPO were 1.10 and 1.25 for thermal and HPP treatments, respectively. For every 10 °C rise in temperature, the inactivation rate constant (k, Un-1 min?1) increased approximately by 1.5 times, within 50–70 °C (at 0.1 MPa), while a 10-fold increase was obtained in the case of HPP treatments. The activation energy (E a ) and the activation volume (V a), depicting the temperature and pressure dependence of k, was found to decrease slightly, with an increase in pressure and temperature, respectively. The PPO inactivation rate constant was modeled as a function of both temperature and pressure conditions by combining both Arrhenius and Eyring equations.  相似文献   

5.
Pectinmethylesterase (PME), peroxidase (POD), and polyphenoloxidase (PPO) residual activities (RAs) and physicochemical parameters (pH, total soluble solids (TSS), water activity (aw), viscosity and color) of Tommy Atkins and Manila mango purees (MPs) were evaluated after high hydrostatic pressure (HHP) treatments at 400–550 MPa/0–16 min/34 and 59 °C. HHP treatment applied at 59 °C induced higher enzyme inactivation levels than the treatment applied at 34 °C in both MPs. The lowest RA of PME (26.9–38.6%) and POD (44.7–53%) was achieved in Manila MP treated at 450 MPa/8–16 min/59 °C and 550 MPa/4–16 min/59 °C, respectively. Otherwise, Tommy Atkins puree pressurized at 550 MPa/8–16 min/59 °C had the lowest PPO RA (28.4–34%). A slight decrease in pH and TSS values of both HHP-processed MPs at 34 and 59 °C was observed, whereas the aw remained constant after processing. The viscosity of MPs tended to augment up to 2.1 times due to the application of HHP. No significant changes were observed in color parameters of Tommy Atkins MP, except at 550 MPa and 59 °C where higher yellow index (YI) (122.4?±?3.3) and lower L* (37.3?±?5.3) were obtained compared to the untreated MP. HHP caused an increase in L* values in Manila MP, whereas no clear trend was observed in YI. HHP processing at 550 MPa combined with mild temperature (59 °C) during 8 min could be a feasible treatment to reduce enzymatic activity and preserve fresh-like quality attributes in MP.  相似文献   

6.
High hydrostatic pressure treatment (50-400 MPa) combined with heat treatment (20–60°C) effects on peroxidase (POD), polyphenoloxidase (PPO) and pectin methylesterase (PME) activities of fruit-derived products were studied. Assays were carried out on fresh orange juice and strawberry puree. Pressurization/depressurization treatments caused a significant loss of strawberry PPO (60%) up to 250 MPa and POD activity (25%) up to 230 MPa, while some activation was observed for treatments carried out in 250–400 MPa range for both enzymes. Optimal inactivation of POD was using 230 Mpa and 43°C in strawberry puree. Combinations of high pressure and temperature effectively reduced POD activity in orange juice (50%) to 35°C. The effects of high pressure and temperature on PME activity in orange juice were very similar to those for POD.  相似文献   

7.
High pressure processing (HPP) is a non-thermal technology used to activate or inactivate enzymes. This study investigated the effects of HPP (600 MPa for 5 or 30 min at 25 °C) on cocoyam, Peruvian carrot and sweet potato color, and the polyphenoloxidase (PPO) and peroxidase (POD) activities in tuber cubes, puree, and enzyme extract subjected to HPP. The results showed enzyme inactivation by HPP in cocoyam (up to 55% PPO inactivation in puree and 81% POD inactivation in extract) and Peruvian carrot (up to 100% PPO and 57% POD inactivation the extract). In contrast, enzyme activation was observed in sweet potato (up to 368% PPO and 27% POD activation in puree). The color results were compatible to enzyme activity: the color parameters remained unchanged in cocoyam and Peruvian carrot, which showed high PPO and POD inactivation after HPP. Furthermore, the impact of HPP on the enzymes was influenced by the matrix in which HPP was carried out, evidencing that the enzyme structure can be protected in the presence of other food constituents.Industrial relevanceThe enzymes PPO and POD are an important concern for vegetable processing, due its ability to induce browning after vegetables are cut. The HPP at 600 MPa for 5 or 30 min can be used to inactivate these enzymes in cocoyam and Peruvian carrot, guaranteeing the color and freshness of the tubers similar to the fresh cut vegetable.  相似文献   

8.
This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6‐ to 20‐min pressure‐hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain.  相似文献   

9.
Sea buckthorn berries juice is a nutritious beverage, rich in vitamin C and carotenoids with high antioxidant activity. The main requirements for a freshly squeezed sea buckthorn juice production are the cloud stability and antioxidant activity retention after processing. Appropriate process technologies and conditions have to be applied in order to inactivate pectin methyl esterase (PME), responsible for cloud loss, while maintaining the nutritional characteristics and antioxidant activity of the juice. The objectives of the present work were to study and model the effect of thermal treatment and high pressure (HP) processing on the inactivation kinetics of endogenous PME and on total antioxidant activity alteration. Thermal treatment significantly affected PME inactivation and residual antioxidant activity. Processing even at mild process conditions (60 °C for 1 min) resulted in 2.5-fold antioxidant activity reduction and 50 % PME inactivation compared to untreated sample. Pressure and temperature acted synergistically for PME inactivation that followed first-order kinetics with a residual PME activity at all pressure–temperature combinations used (200–600 MPa and 25–35 °C). The effect of temperature and pressure on the inactivation rate constants was expressed through the activation energy and activation volume, respectively. Values of 163 kJ/mol and ?17 mL/mol at reference pressure of 600 MPa and reference temperature of 35 °C were estimated, respectively. Antioxidant activity of the samples was expressed through the determination of the effective concentration (EC50). A slight increase in sea buckthorn antioxidant activity when applying pressures (200–600 MPa) at ambient temperature (25 °C) was observed compared to the corresponding value of untreated juice. Processing at higher temperatures did not significantly alter the total antioxidant activity of sea buckthorn juice. For sample treated at 600 MPa–35 °C for 5 min, a 5 % reduction of total antioxidant activity was observed. These conditions are proposed as effective process conditions for sea buckthorn juice cold pasteurization, based on the higher antioxidant activity retention and simultaneous PME inactivation.  相似文献   

10.
The primary issue of the pineapple puree processing industry is its limited stability. The study compares the quality changes in high-pressure and thermally processed pineapple puree at different storage conditions and estimates the shelf-life. The untreated (S1) and treated samples (S2, S3, and S4 treated at 600 MPa/50 °C/13 min, 600 MPa/70 °C/20 min, and 0.1 MPa/95 °C/12 min, respectively) packed in ethylene vinyl alcohol (EVOH) and multi-layered (ML) polyethylene terephthalate (PET) pouches were stored up to 125 days at 5, 15, and 25 °C. The total color change (?E*) and browning index during storage increased according to zero-order kinetic model, whereas ascorbic acid (AA), total phenolics, and total antioxidant capacity followed the first-order decay. The overall sensory acceptability (OA) of S2 was higher than both S3 and S4 at 5 °C, and it dropped rapidly at 15 and 25 °C. The activity of polyphenol oxidase and pectin methylesterase in S3 and S4 was less than 10 % up to 120 days at 5 °C. The consistency (κ) and residual enzyme activity in S2 decreased with storage duration and temperatures. For estimating the shelf-life, the change in OA was crucial for S2 and S3, whereas retention of AA served as the critical parameter for S4. The sample S2 packed in ML pouch was found to be the best sample having the shelf-life (microbial count?<?6-Log cfu g?1, ?E*?<?12, OA?>?5, and AA?>?200 mg kg?1) of 120, 50, and 25 days at 5, 15, and 25 °C, respectively.  相似文献   

11.
Furan, a potential carcinogenic compound, can be formed in array of processed foods. The objective of this study was to conduct kinetic studies in pineapple juice and assess the interactive effects of pressure (0.1 to 600 MPa) and temperature (30 to 120 °C) on furan formation. Additional experiments were carried out in tomato, watermelon, cantaloupe, kale, and carrot juice to understand the influence of matrix and juice pH. Furan was monitored in raw (control) and processed samples by automated headspace gas chromatography mass spectrometry, and quantified by calibration curve method with d4-furan as internal standard. The data were modeled using zero-, first-, and second-order equations. The zero-order rate constants (k T,P ), activation energy (E a ), and Gibbs free energy of activation (ΔG ?) of furan formation in thermally processed (TP; 90–120 °C) pineapple juice were found to be 0.036–0.55 μg/kg/min, 98–114 kJ/mol, and 173.9–180.5 kJ/mol, respectively. Furan concentration was negligible and close to the detection limit (0.37 μg/kg) after pressure treatment (600 MPa at 30 °C) of juice samples. For similar process temperatures, the rate constants of pressure-assisted thermally processed (PATP; 600 MPa at 105 °C) pineapple juice were lower than that of TP samples. Furan formation was influenced by juice matrix and pH. On the other hand, PATP markedly suppressed furan (0.7 to 1.6 μg/kg) in these selected juices. In conclusion, furan formation increased with process temperature and treatment time, while pressure treatment at ambient temperature did not promote its production. Furan formation in TP fruit juices was also influenced by juice matrix and pH, but these were not the significant factors for PATP-treated juices.  相似文献   

12.
The effect of high pressure-thermal (HPT) processing (600 MPa, 20–100 °C) on the activity of pear enzymes and related quality attributes was investigated. HPT processing at 20 °C for 5 min resulted in 32%, 74% and 51% residual activities of polyphenol oxidase (PPO), peroxidase (POD) and pectin methylesterase (PME), respectively. Increasing processing temperature to 40 and 60 °C reduced the level of PPO and POD inactivation, with the maximum residual activities of 64% and 123%, respectively observed after 3-min treatments at 40 and 60 °C. Overall, HPT at 20 to 60 °C had minimal effect on quality, although enzymatic browning was observed upon air exposure. HPT at 80 to 100 °C caused almost complete inactivation of PPO and POD with 90% and 92% inactivation respectively after 3-min processing at 100 °C, which reduced browning upon air exposure. Nevertheless, the lowest texture retention of 22% was observed under this condition.Industrial relevanceThe study examined the effects of combined high pressure thermal processing on quality related pear enzymes and related instrumental quality attributes such as colour and texture. The study enabled identification of processing regimes for enzyme inactivation and quality retention. The excellent quality retention following HPP at 20 to 40 °C makes this condition suitable for ‘fresh-like’ small portion products for immediate consumption after unpacking that do not require complete PPO and POD inactivation. On the other hand, the almost complete inactivation of oxidative enzymes PPO and POD at 100 °C makes this condition more appropriate for the production of bulk products for food service applications or pureed ingredients for baby food, or pear pieces for yoghurt, that require PPO inhibition but not necessarily high firmness retention.  相似文献   

13.
The effects of high hydrostatic pressure (HHP) treatments at pressures of 300–600 MPa for 1–20 min and of high-temperature, short-time (HTST) treatment on the inactivation of natural microorganisms in blanched mango pulp (BMP) and unblanched mango pulp (UBMP) were investigated. No yeasts, molds, or aerobic bacteria were detected in BMP or UBMP after HHP treatments at 300 MPa/15 min, 400 MPa/5 min, 500 MPa/2.5 min, and 600 MPa/1 min and HTST treatment at 110 °C/8.6 s. Therefore, these conditions were selected to study the effects of HHP and HTST treatments on pectin methylesterase (PME) activity, water-soluble pectin (WSP) levels, and the rheological characteristics of UBMP and BMP. HHP treatment at a pressure of 600 MPa for 1 min significantly reduced PME activity in UBMP and significantly activated PME in BMP, whereas pressures of 300–500 MPa activated PME regardless of blanching. However, PME activity was reduced by 97 % in UBMP and was completely inactivated in BMP by HTST treatment. WSP levels were significantly decreased by HHP treatment but were increased by HTST treatment in UBMP and BMP. Both HHP and HTST treatments increased the viscosity, storage modulus, and loss modulus of UBMP and BMP. No significant changes in total sugar, total soluble solids, titratable acid, or pH were found after any treatment.  相似文献   

14.
Erratum     
Abstract

The effects of high hydrostatic pressure treatment (100 to 600 MPa) coupled with heat treatment (0 to 60 °C) on the inactivation of peroxidase (POD) and polyphenoloxidase (PPO) in red grapes (Vitus viniferd) have been studied. The examination of the complex interactions between pressure and temperature has been carried out using a central composite rotatable design (CCRD). The response surfaces show that the lowest activity of POD (55.75%) and PPO (41.86%) was found to be at 60 °C at 600 MPa and 100 MPa, respectively.  相似文献   

15.
该研究以非浓缩还原(not from concentrate,NFC)杨梅果汁为研究对象,研究不同超高静压(high hydrostatic pressure,HHP)处理(300~600 MPa/0~30 min)对NFC杨梅汁中多酚氧化酶(polyphenol oxidase,PPO)和过氧化物酶(peroxidase,POD)的影响。对比传统高温灭酶,拟合建立HHP压力与酶活性的一级动力学回归方程,分析得到相关参数(压力脉冲效应PE、压力脉冲数值ND、等效破坏值Dp及酶的失活速率K)。结果表明,较高压力(400~600 MPa)对PPO与POD均起到钝化效果,其中600 MPa/10 min能钝化90%的PPO活性,600 MPa/20 min钝化80%的POD活性。600 MPa/30 min条件下,重复加压不能明显加强钝化效果。将PPO和PPO活性与压力进行一级动力学拟合,得到相应线性回归方程(R2>0.8)。随着压力从300 MPa升高到600 MPa,PPO的K值从3.03×10-2升高到12.12×10-2,POD的K值从1.23×10-3上升到7.67×10-3。600 MPa条件下,PPO和POD的ND分别为1.04和1.59,Dp值都为19。同时,压力和保压时间及其相互作用对PPO和POD活性的影响均有极高的显著性(p<0.001)。因此,HHP对杨梅果汁中关键的氧化酶能起到较好的钝化作用,能够为NFC杨梅汁加工技术的应用提供科学依据。  相似文献   

16.
The thermal and pressure stability of broccoli and carrot pectin-converting enzymes, in particular pectinmethylesterase (PME), β-galactosidase (β-Gal), and α-arabinofuranosidase (α-Af), were investigated in vegetable purée matrices. In situ enzyme inactivation by thermal and high-pressure processing (respectively 5 min at 25–80 °C at 0.1 MPa and 10 min at 0.1–800 MPa at 20 °C) was evaluated by measuring the residual enzyme activity in crude extracts of treated carrot, broccoli floret, and broccoli stem purée samples. PME was completely inactivated in all vegetable purée matrices after a 5-min treatment at 80 °C. After a treatment at 800 MPa (20 °C, 10 min) only 77–90 % of pressure stable PME was inactivated, depending on the matrix. β-Gal and α-Af enzymes were inactivated in the vegetable purée matrices by thermal treatments respectively at 67.5–72.5 and 80 °C. These enzymes showed some pressure resistance: treatments respectively at 600–700 and 600–750 MPa were necessary for one log-reduction of β-Gal and α-Af activity in the different purées at 20 °C. Under the assumption of a first-order inactivation model, inactivation rate constants and their temperature or pressure dependency were determined for the different enzymes. Based on differences in process stability of the enzymes in the individual purée matrices, the feasibility for the creation of specific endogenous enzyme populations by selective processing was evaluated.  相似文献   

17.
The objective of this work was to study the thermal and high pressure inactivation kinetics of polyphenol oxidase (PPO) and peroxidase (POD) in strawberry puree. PPO from two strawberry cultivars (‘Festival’ and ‘Aroma’) was found to be highly thermostable in strawberry puree with no significant inactivation even after 30 min treatment at 100 °C. In contrast, POD from the two cultivars displayed very high thermosensitivity with complete inactivation in less than 5 min at 70 °C. The thermal inactivation kinetics of strawberry POD was described by a biphasic model. The activation energies for the inactivation of the stable and the labile fractions were estimated to be 254.9 and 221.6 kJ/mol respectively. Combined high pressure–thermal treatment at pressures ranging from 100 to 690 MPa, temperatures ranging from 24 to 90 °C and treatment times between 5 and 15 min did not have significant effect on PPO while substantial inactivation of POD was observed. The inactivation kinetics of POD during combined high pressure–thermal processing was well described by first-order kinetics probably due to the inactivation of the labile fraction during the pre-heating and the compression phase.Industrial relevanceThe oxidative enzymes polyphenol oxidase and peroxidase cause the degradation of anthocyanins and other polyphenols in strawberry products, leading to discoloration and loss of antioxidant activity. In this work the thermal and high pressure inactivation of strawberry polyphenol oxidase and peroxidase was investigated so as to assess the suitability of high pressure processing as an alternative to thermal processing. Strawberry polyphenol oxidase was found to be highly resistant to both thermal and high pressure inactivation. Thus in order to maintain the quality of processed strawberry products, high pressure processing should be accompanied by additional measures such as exclusion of oxygen, refrigerated storage and the use of natural enzyme inhibitors.  相似文献   

18.
The thermal and pressure stability of tomato pectinmethylesterase (PME), polygalacturonase (PG), β-galactosidase (β-Gal), and α-arabinofuranosidase (α-Af) were investigated in situ. Enzyme inactivation by thermal and high-pressure processing (respectively 5 min at 25–95 °C at 0.1 MPa and 10 min at 0.1–800 MPa at 20 °C) was monitored by measuring the residual activity in crude enzyme extracts of treated tomato purée samples. PME was completely inactivated after a 5-min treatment at 75 °C. Only 30 % of the pressure stable PME was inactivated after a treatment at 800 MPa (20 °C, 10 min). A 5-min treatment at 95 °C and a treatment at 550 MPa (20 °C, 10 min) caused complete PG inactivation. β-Gal and α-Af activities were already reduced significantly by thermal treatments at 42.5–52.5 °C and 45–60 °C, respectively. These enzymes were, however, rather pressure resistant: treatments at respectively 700 and 600 MPa were necessary to reduce the activity below 10 % of the initial value. Assuming that first-order, fractional conversion or biphasic inactivation models could be applied to the respective enzyme inactivation data, inactivation rate constants and their temperature or pressure dependence for the different enzymes were determined. Based on differences in process stability of the enzymes, possibilities for the creation of specific “enzyme populations” in tomato purée by selective enzyme inactivation were identified. For industrially relevant process conditions, the enzyme inactivation data obtained for tomato purée were shown to be transferable to intact tomato tissue.  相似文献   

19.
The stability of fruit bromelain (FBM) in pineapple pulp was studied within a high-pressure domain of 0.1–600 MPa/30–70 °C/1 s–30 min. The pulse effect was quantified as a function of pressure, temperature, pressure build-up and decompression times. A maximum of 60% reduction in FBM activity was obtained after a single pulse of 600 MPa/70 °C. Upon applying nth order model, the obtained reaction order (n) for thermal (0.1 MPa/30–70 °C) and high-pressure (100–600 MPa/30–70 °C) inactivation was 1.1 and 1.2, respectively. The inactivation rate constant (k) ranged from 1.2 to 45.0 × 10 3 Un  1 min 1. The activation energy was nonlinearly dependent on pressure (P); whereas, the activation volume was linearly related to temperature (T). The nonlinear dependence of k on P and T was modeled by an empirical equation. The D-values obtained from the empirical model appeared to be more realistic than those from the log-linear kinetics.Industrial relevancePineapple fruit bromelain (FBM) has numerous health benefits and therapeutic effects. It is a protease enzyme that helps in digestion. Processing of pineapple pulp needs attention towards retaining the maximum FBM activity in it. A detailed kinetic study of FBM within a broad range of pressure–temperature–time domain will help in designing a high-pressure process for the pineapple pulp with respect to its bromelain stability.  相似文献   

20.
The effects of blanching and high hydrostatic pressure (HHP) treatments on natural flora evolution, polyphenoloxidase (PPO) activity and color of banana puree adjusted to pH 3.4 and water activity (aw) of 0.97 were evaluated during 15 days storage at 25°C. Standard plate as well as yeast and mold counts of HHP treated purees were <10 CFU/g throughout storage. Blanching time was found to affect (P<0.05) puree color. HHP treatments retained the initial color of the banana purees. Longer browning induction times and slower browning rates were observed when a longer blanching time was combined with a 689 MPa pressure treatment. A residual PPO activity < 5% was observed in the puree when a 7 min blanch was followed by HHP treatment at 689 MPa for 10 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号