首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
李伟  杨康  程远平 《煤炭学报》2022,47(2):849-859
甲烷在多孔介质煤层中运移时,会发生显著的同位素分馏,目前的模型和机制并不能完全解释瓦斯运移过程中的同位素分馏现象。以不同分子间的竞争吸附作用、扩散能力差异性以及碳同位素分馏解吸-扩散成因等理论为基础,构建了煤层甲烷碳同位素分馏动力学模型。研究结果表明,在解吸过程中,甲烷碳同位素逐渐变重。瞬时同位素值在解吸后期呈指数级变重,累计同位素值随时间的变化与气体的累计脱气量随时间的变化相似。在气体扩散过程中,扩散系数比值(D1/D2)对同位素分馏具有显著的控制作用。煤心中吸附气的体积分数占到90%以上,吸附/解吸引起的同位素分馏变化与耦合作用下引起的同位素分馏变化相近,该模型较好的预测了煤心瓦斯解吸中碳同位素分馏试验。甲烷在孔隙中的解吸、扩散是碳同位素发生分馏的重要原因,在此过程中游离气和吸附气引起的同位素分馏具有阶段性。通过该模型的参数与煤心的参数匹配后,可以获得煤心吸附气含量、游离气含量,进而评价煤层瓦斯含量。将该模型应用到煤层钻孔瓦斯抽采过程中,结合现场测试和实验室测试确定模型参数,建立煤层钻孔抽采瓦斯碳同位素值与瓦斯抽采情况的关系。可以判断煤层...  相似文献   

2.
晋城地区煤层甲烷碳同位素特征及成因探讨   总被引:3,自引:0,他引:3  
段利江  唐书恒  刘洪林  李贵中  王勃 《煤炭学报》2007,32(11):1142-1146
对取自沁水盆地南部晋城地区的煤芯样中的解吸气进行了甲烷碳同位素测定.结果表明,随着解吸过程的进行,δ13C1值逐渐变重,δ13C1值和解吸时间呈对数关系,δ13C1值变重趋势具有先快后慢的阶段性特点.取样条件和取样时间对煤层甲烷碳同位素值有较大影响,在某一个时间点所取气样的同位素值不一定代表该井原地气体的同位素值.在采样进行同位素测定时,煤样全部解吸气体的碳同位素的平均值才能代表该井煤层气的原地气同位素值.在实际操作中,可以用罐装煤样气体解吸半量时间点所取气样的同位素值来代表全部解吸气体的同位素平均值.与煤岩热模拟实验所得到的经验公式计算结果比较,晋城地区实测的煤层甲烷碳同位素值偏轻.晋城地区煤层甲烷碳同位素的组成特点受解吸-扩散-运移过程中发生的分馏效应以及其他多种因素的共同制约.  相似文献   

3.
煤层甲烷碳同位素与含气性关系   总被引:1,自引:0,他引:1       下载免费PDF全文
孟召平  张纪星  刘贺  刘珊珊 《煤炭学报》2014,39(8):1683-1690
煤层气甲烷碳同位素值是反映煤层气成因及赋存条件的有效参数。通过对沁水盆地沁南东区块煤层甲烷碳同位素和煤储层含气性测试资料分析,剖析了3号煤层甲烷碳同位素分布特征,建立了煤层甲烷碳同位素与镜质组反射率、煤层埋藏深度和煤储层含气性之间的相关关系和模型,揭示了煤层甲烷碳同位素分布的控制机理。研究结果表明:本区3号煤层自然解吸气甲烷碳同位素为-28.89‰~-53.27‰,平均-36.48‰。与全国其他地区同等演化程度的煤层气相比总体偏重,表现出煤层具有较好的保存条件;3号煤层甲烷碳同位素与镜质组反射率和煤层埋藏深度之间呈对数函数关系,且随着镜质组反射率和煤层埋藏深度增加而变重,与全国煤层甲烷碳同位素统计规律一致,主要受控于煤层气形成的热动力学机制之下的同位素分异效应和煤层气解吸—扩散—运移过程中甲烷碳同位素的分馏效应;煤层甲烷碳同位素与煤储层含气性之间存在相关性,且随着煤层气含量、煤储层压力和含气饱和度增加,3号煤层甲烷碳同位素也相应变重,且呈对数函数关系,反映控制煤储层含气性的因素与控制煤层甲烷碳同位素的因素存在一致性。  相似文献   

4.
阜新煤田注二氧化碳提高煤层甲烷的研究   总被引:2,自引:1,他引:2  
针对阜新煤田煤储层的地质特征,选取了刘家煤层气勘探区和东梁矿2个地点,开展了注二氧化碳置换煤层甲烷的试验模拟研究.试验结果表明,二氧化碳的吸附能高于甲烷的吸附能,它可以将甲烷从煤的微表面置换出来,从而提高煤层甲烷的采出率.在置换过程中总是吸附能力弱的甲烷首先解吸,而吸附能力强的二氧化碳最后解吸,而且较高压力下的置换效果总比低压下的好.与东梁矿煤样相比,刘家煤样具有较强的吸附能力和较高的单位压降下的解吸率,但置换效率相差不大,主要原因是二者的二氧化碳对甲烷分离因子差别较小.注气试验时应该充分考虑注入压力点和气体注入量才能保证满意的置换效果.  相似文献   

5.
孙健  魏强  晏波  肖贤明 《煤炭学报》2018,43(10):2848-2856
解吸法是测试煤层含气量、评价煤层气地球化学特征的常用方法,但由于存在一定数量的损失气,使得对煤层气的全解吸过程了解甚少,也难以评估损失气拟合计算的可靠性。利用自主研发的煤层气/页岩气生成与解吸实验装置,对一块煤岩样品(Ro=0. 84%)进行了模拟(模拟后样品Ro=1. 80%),精确测定了在设定条件下的损失气、解吸气与残留气的数量、成分与甲烷碳同位素,对比研究了USBM直线法和多项式回归法对损失气拟合计算的制约条件与可靠性,探讨了煤层气解吸过程中成分与甲烷碳同位素分馏的机理。结果表明:损失时间是影响损失气量估算结果可靠性的关键,当损失时间较短(0. 25 h),USBM直线法与多项式法估算的均损失气量较接近真实值;相比之下,多项式法的结果更为可靠。样品气体解吸过程存在成分与甲烷碳同位素分馏,表现为:气体干燥系数(C_1/C_(1-3))总体降低,甲烷碳同位素(δ~(13)C_1)逐渐变重。样品广泛发育纳米孔隙结构,在气体解吸过程中存在的解吸-扩散-运移分馏是导致气体组分和甲烷碳同位素分馏的重要原因。  相似文献   

6.
本文从煤的孔隙结构,煤层甲烷吸附(解吸)的热力学与动力学,煤层中吸附甲烷的赋存状态与扩散机理,煤表面与甲烷分子的相互作用等方面介绍了煤层甲烷吸附(解吸)的研究与发展概况。  相似文献   

7.
利用任楼井田及所在的临涣矿区生产矿井常观孔、矿井出水点,从上而下分别取第四系第四含水层、二叠系煤系砂岩含水层、石炭系太原组岩溶含水层及奥陶系岩溶含水层24个水样,测试溶解碳酸盐中δ13C与δ18O,分析13C与18O组成特征与演化规律.研究结果表明:任楼井田及所在的临涣矿区地下水溶解碳酸盐δ13C变化幅度大,碳循环复杂,土壤水补给机理、同位素交换反应机理和含水层围岩成分溶解机理明显;含水层碳酸盐岩含量决定溶解碳酸盐δ13C与δ18O的变化关系,碳酸盐岩含量越高,δ13C随δ18O变化斜率减小;四含水因埋藏较浅并受煤层开采影响,处于相对“开放”系统内进行地下水循环,煤系水循环系统相对比较封闭,岩溶含水层虽然埋藏深,水循环系统相比四含“封闭”,但地下水径流速度快,补给源区水力梯度大,可能为山区补给.  相似文献   

8.
通过对焦作矿区二1煤层自上而下连续取样,做含气量、气体成分、甲烷碳同位素、显微煤岩组分和等温吸附等一系列实验,引用吸附势理论计算煤层气含量演化史,并结合煤层的埋藏史和热史进行分析,认为该区存在煤层气的运移和再聚集。揭示出该区存在3种煤层气分馏机理:热解分馏、解吸/吸附—扩散分馏和水溶解分馏。三者共同作用造成煤层底部的构造煤分层δ13C值高于其上部的原生结构煤分层,形成甲烷碳同位素的分馏。解吸/吸附—扩散分馏和水溶解分馏分别造成煤层底部的构造煤分层N2和CO2组分值低于其上部的原生结构煤分层,形成煤层气组分分馏。煤层气的运移、再聚集和多种分馏机理造成该区煤层气较为富集,成为煤层气开发的有利区。  相似文献   

9.
本文借鉴生物气成因等理论,从分馏的角度探讨微生物作用对煤层气造成的效应,对生物成因的煤层甲烷碳同位素值进行定性描述,并给出了煤层CH4和CO2之间碳同位素值之间的关系。在此基础上以淮南新集矿区煤层气为例,分析得出煤层气的微生物分馏效应对煤层气组分和同位素组成造成的影响,并得出结论,在煤层气的微生物分馏效应中,大部分煤层甲烷来自CO2的还原。  相似文献   

10.
为了研究沁水盆地北部寺家庄太原组煤层甲烷 (CH 4)及二氧化碳(CO 2)的成因,对11口煤层气井排采气进行了化学组分和同位素测试,探讨了煤层CH 4及CO 2的成因及联系。结果表明:沁水盆地北部煤层CH 4平均体积分数为98.6%,CO 2为0.25%,N 2为1.07%;煤层CH 4碳同位素值介于-33.2‰~-40.8‰,平均值为-37.1‰,以煤热裂解成因为主,含有微生物CO 2还原成因CH 4,属于混合成因煤层气。沁北煤层CH 4碳同位素分馏起主导作用的是解吸-扩散-运移作用,储层浅部压力小,含轻碳同位素的CH 4优先解吸,经扩散运移至上部地层进而逸散到大气中。煤层CO 2的δ13C值为-15.9‰~+0.05‰,平均值为-8.6‰,为煤热演化初期或最近一次煤层抬升再沉降后煤中有机质热裂解产生,碳同位素较重的地方受地下水或微生物CO 2还原作用影响。煤层CO 2碳同位素随煤层埋藏变浅而变重,浅部煤层微生物CO 2还原作用强,使CO 2碳同位素变重。  相似文献   

11.
华北油田煤层气处理中心污水系统因投产年限久、设计不合理等因素,出现净化后的水质监测不合格、装置运行困难等问题,"煤层气污水处理方法分析与研究"项目旨在解决此类问题,在设备升级改造、配件及用料的选型方面,推荐适合煤层气污水的处理设备,确定合理的维护保养周期,形成较为完备的管理制度确保净化水水质达标率100%,确保不出现任何环境污染事件。  相似文献   

12.
贵州西部地区煤层气井产出气地球化学特征   总被引:1,自引:0,他引:1  
基于贵州西部17口煤层气井不同排采时间的产出气,通过对气体组分、甲烷碳氢同位素测试以及产能数据的收集,结合研究区水动力条件以及地质特征,研究了该区域煤层气地球化学特征、地质控制因素及与煤层气产能的关系。结果显示:研究区煤层气组分以甲烷为主,属于干气~特别干的气体,甲烷组分体积分数介于91.504%~99.508%,其次为N2和CO2,不同地方煤层气井重烃含量变化大。甲烷稳定碳同位素δ13C1值介于-44.1‰~-27.8‰,δD值介于-196.5‰~-120.8‰,属于热成因气,松河GP井组和大河边Z-1井接近于原生煤层气的特征,研究区东北部织金ZJ井组及其余各井明显受到运移-扩散次生作用的影响。贵州西部煤层气井产出气的甲烷碳氢同位素值呈现东北高西南低的分布趋势,煤变质程度对产出气的地球化学特征具有主要的控制作用,其中甲烷氢同位素值的分布亦受到沉积环境的变化控制。在同一煤层气井组内部,甲烷的碳氢同位素值大小受井组内水动力条件的变化以及开发煤层埋深的影响较大。甲烷碳氢同位素值与日产气量呈现负相关关系,...  相似文献   

13.
本文根据多年来对煤层气利用市场的调查和研究,从市场竞争的角度,深入分析了煤层气与煤炭、石油、天然气等一次能源的竞争力。重点剖析了煤层气较常规天然气的竞争优劣势,其优势主要有廉价资源优势、地缘优势、集输和处理成本优势、生产期长优势和社会效益优势等;其劣势主要是单井产量低、投资回收期长等。分析结果显示,煤层气在一次性能源消费市场中具有一定的竞争力。  相似文献   

14.
煤层气井钻井工艺及完井技术适应性研究   总被引:2,自引:0,他引:2  
在分析国内外主要煤国煤层气资源量基础上,可看出中国的煤层气储存量非常丰富,虽然煤层气的开发利用能大大改善我国能源结构,在一定程度上解决能源供给不足,但是不合理的煤层气井钻、完井方式会对储层造成伤害,影响产气量。因此,针对储层的伤害问题,提出了适应煤层气储层的钻井工艺和完井方式,并着重介绍了各种煤层气井钻井工艺和完井技术,分析结果说明:采用欠/微平衡钻井工艺与裸眼完井、动力洞穴完井和套管射孔压裂完井等完井技术配套开发煤层气,有利于减小对储层的伤害,从而提高采气量。  相似文献   

15.
低阶煤煤层气富集模式初探   总被引:3,自引:0,他引:3  
我国低阶煤中煤层气资源丰富,开发低阶煤煤层气具有重要的意义,对于低阶煤煤层气开发来说,寻找煤层气富集区是开发的关键。本文通过对美国粉河盆地以及我国铁法盆地煤层气富集规律的分析,总结出影响煤层气富集的关键因素和5种不同的煤层气富集模式。  相似文献   

16.
针对瓦斯在煤中的解吸与吸附过程并非完全可逆,吸附解吸迟滞现象非常普遍,分析了以往研究中存在的问题,提出了关于吸附解吸迟滞程度的定量评价指标,通过等温吸附解吸实验考察了最高吸附压力和煤体粒径与迟滞程度的关系,并讨论了吸附解吸迟滞现象的发生机理及其对于深部煤层气开发的影响。结果表明:新的定量评价指标可以反映吸附解吸迟滞从完全可逆至完全非可逆的程度;随着最高吸附压力和煤体粒径的增加,吸附解吸迟滞程度随之增强;吸附解吸实验结果是综合了扩散作用的扩散-吸附及解吸-扩散结果,且这两个过程很难区分开来;实验发现的该现象是由于气体分子在高压作用下嵌入连通性较差的微孔中并引起孔隙变形,被吸附的气体分子受窄小的孔隙通道限制,无法从孔隙中解吸并扩散出来而导致的,即本文提出的"扩散受限"假说;深部煤层气的气体含量可能会很高,但受解吸迟滞现象影响,其真正的可采储量和产出规律需要利用等温解吸线而非等温吸附线进行评估;除了通过增透措施提升煤体的渗透率外,如何促进微尺度下的气体解吸与扩散也应该成为深部煤层气开发需要着重考虑的问题之一。  相似文献   

17.
我国煤层气勘探开发工作目前呈现出良好的发展态势,已从初期的资源论证阶段向国家规划和商业性生产迈进了一大步。本文论述了中联煤层气有限责任公司作为国家唯一具有对外合作专营权的煤层气专业公司,在建设示范工程、构建技术体系、探索煤层气开发利用方面所做的工作。  相似文献   

18.
煤层气水平井与常规油气水平井最大的不同是一般不单独施工水平井,而是与预先钻好的直井连通,水平井产气,直井排采。采用水平井技术开采煤层气可有效增加供给范围、提高导流能力、提高单井产量,但特殊的工艺也给施工水平井增加了技术难度。本文阐述了在沁水盆地和顺区块施工煤层气水平连通井所采用的井眼轨道优化设计、井身结构优化设计、钻井液优化设计、轨迹控制、水平连同、钻井液维护等关键技术,介绍了中石化华东分公司在沁水盆地和顺区块实施的由和1井、和平1井组成的水平连通井组的设计与施工情况,并对今后在该地区实施水平连通井提出了建议。  相似文献   

19.
本文回顾和总结了晋煤集团煤层气的开发历程和煤层气利用情况,分析了晋煤集团煤层气开发利用的方向和市场,详细阐明了晋煤集团的近期规划和发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号