首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have theoretically investigated 8 /spl times/ 10-Gb/s wavelength-division multiplexing (WDM) signal transmission characteristics based on semiconductor optical amplifiers (SOAs) with equalized gain using discrete Raman amplification (DRA). Gain equalization and low noise figures have been obtained by adjusting the backward Raman pumping power and wavelength at a dispersion compensating fiber (DCF) for each span. Bit-error-rate characteristics were calculated for 8 /spl times/ 10-Gb/s WDM signal transmission over 6 /spl times/ 40-km single-mode fiber (SMF) + DCF links with gain-equalized SOAs using DRAs at DCF. Approximately a 2.5-dB improvement of the receiver sensitivity was achieved by using SOAs and DRAs with optimized Raman pumping. One can easily upgrade the transmission length of a link based on SOAs with an appropriate backward pump laser at each DCF.  相似文献   

2.
A novel wavelength arrangement using C- and L-band-separated Raman preamplification is proposed for application to bidirectional unrepeatered transmission systems operating with multiple 43 Gb/s channels. The proposed wavelength allocation makes it possible to greatly mitigate Raman gain depletion by the counter-propagating signals. The authors have achieved bidirectional unrepeatered transmission of 32 /spl times/ 43 Gb/s channels (= 1.28 Tb/s) over 200 km with Raman preamplifiers using the proposed technique. They found that the system performance of bidirectional transmission with C/L band-separated Raman preamplification is degraded by nonlinear interactions between the high power Raman pump lights and the WDM signals. The root cause can be described in terms of nondegenerate four-wave mixing induced by beating between the WDM signals and two longitudinal modes of the Raman pump light. A solution avoiding ND-FWM was demonstrated in a 32 /spl times/ 43 Gb/s transmission experiment.  相似文献   

3.
In this paper, we present a comprehensive comparison of the performance of an 80-km-per-span erbium-doped fiber amplifier (EDFA) system and a hut-skipped (160-km-per-span) all-Raman system over standard single-mode fiber (SSMF) for the first time, using semianalytic models. The numerical results reveal that a hut-skipped all-Raman system (using one-order Raman pumping) can achieve comparable performance as the conventional 80-km-per-span EDFA system for a common 50-GHz-spaced 80 /spl times/ 10 Gb/s nonreturn-to-zero (NRZ) wavelength division multiplexing (WDM) system at typical fiber loss of 0.22 dB/km. For 100-GHz-spaced 40 /spl times/ 40 Gb/s carrier-suppressed return-to-zero (CS-RZ) WDM transmission, it was found that a hut-skipped all-Raman system can achieve even better performance than the current 80-km-per-span EDFA system. It was also found that the impact of pattern-dependent Raman crosstalk is more severe than interchannel cross-phase modulation (XPM) in a hut-skipped all-Raman system with 80 /spl times/ 10 Gb/s capacity.  相似文献   

4.
Coherent optical frequency-division multiplexing (CO-OFDM) is one of the promising pathways toward future ultrahigh capacity transparent optical networks. In this paper, numerical simulation is carried out to investigate the feasibility of 1 Tb/s per channel CO-OFDM transmission. We find that, for 1 Tb/s CO-OFDM signal, the performance difference between single channel and wavelength division multiplexing (WDM) transmission is small. The maximum Q is 13.8 and 13.2 dB respectively for single channel and WDM transmission. We also investigate the CO-OFDM performance on the upgrade of 10-Gb/s to 100-Gb/s based DWDM systems with 50-GHz channel spacing to 100-Gb/s systems. It is shown that due to the high spectral efficiency and resilience to dispersion, for 100-Gb/s CO-OFDM signals, only 1.3 dB Q penalty is observed for 10 GHz laser frequency detuning. A comparison of CO-OFDM system performance under different data rate of 10.7 Gb/s, 42.8 Gb/s, 107 Gb/s and 1.07 Tb/s with and without the impact of dispersion compensation fiber is also presented. We find that the optimum fiber launch power increases almost linearly with the increase of data rate. 7 dB optimum launch power difference is observed between 107 Gb/s and 1.07 Tb/s CO-OFDM systems.   相似文献   

5.
Mach-Zehnder interferometers with fiber Bragg gratings (MZ-FG) are investigated as promising devices for wavelength-selectable optical add-and-drop multiplexers (OADM). A wavelength reused OADM performance is demonstrated for the first time to our knowledge in a six-channel, 10 Gb/s WDM experiment using a single-stage MZ-FG. We discuss both theoretically and experimentally the interferometric crosstalk induced by imperfect Bragg-reflectivity. Two methods are proposed to solve the interferometric crosstalk issues. The first one is wavelength offset scheme. It is experimentally confirmed that there is no interference when the wavelength of crosstalk is away from that of the signal at least two times of bit-rate. In order to separate each wavelength, the master-slave wavelength control method is proposed with Fabry-Perot interferometer made of a set of fiber gratings. The second one is a cascaded MZ-FG scheme eliminating the crosstalk itself. The calculation indicates that a Bragg-reflectivity of only 93% can suppress the crosstalk to be -35 dB. Cascaded MZ-FG's have been fabricated to show that the interferometric crosstalk can be successfully reduced to -50 dB for the add signal, and -71 dB for the drop signal, respectively. The eight-wavelength 10 Gb/s OADM experiment is carried out to demonstrate the low interferometric crosstalk performance  相似文献   

6.
The major drawback of incoherent broadband sources (BBSs) is their inherent intensity noise. Semiconductor optical amplifiers (SOAs) can be exploited at the transmitter to mitigate this noise. Optical filtering at the receiver, however, leads to the return of most of suppressed noise. Wider filtering at the receiver is the best known strategy to maintain performance gains, at the price of reduced spectral efficiency due to the tradeoff between noise cleaning and adjacent channel crosstalk. We introduce a novel balanced receiver for wavelength division multiplexing (WDM) systems that maintains greater noise cleaning and leaves spectral efficiency unchanged. Unlike standard receivers, our balanced scheme does not filter the desired signal. In this paper, we first demonstrate that the newly proposed receiver is equivalent to standard WDM receivers when no SOA for noise cleaning is present at the transmitter. Although a 2.9-dB power penalty is incurred, network capacity is unchanged, i.e., bit error rate (BER) floors due to intensity noise are the same. When SOAs are employed to mitigate severe intensity noise, we show that our receiver outperforms the wide filtering strategy by two orders of magnitude. Dense WDM capacity is demonstrated up to 10 Gb/s using a thermal source, a saturated SOA, and the balanced detection scheme. A BER of 10-6 is achieved at 10 Gb/s; further improvement is possible using low overhead forward error correction or a better SOA design. This demonstrates the ability of spectrum-sliced wavelength division multiplexing (SS-WDM) passive optical networks (PONs) to operate at 10 Gb/s at good spectral efficiency. Error performance better than 10-9 is achieved up to 8 Gb/s with 30-GHz optical channel bandwidth and 100-GHz spacing.  相似文献   

7.
We report a dispersion slope equalizer on a planar lightwave circuit for wavelength division multiplexing (WDM) transmission. This device consists of an array of lattice-formed equalizers with different compensation values fabricated on one wafer and arrayed-waveguide gratings for wavelength multi/demultiplexing. We describe its configuration, operational principle, parameter design, fabrication, and measured characteristics in detail. N/spl times/20 and N/spl times/40 Gb/s slope equalizers were fabricated and their characteristics agreed well with designed values. We also report a reduction in the bias electrical power needed for thermooptic phase shifters in the equalizer array that we realized by employing a phase trimming technique normally used for optical switches.  相似文献   

8.
We describe an experimental realization of ultra-long-haul (ULH) networks with dynamically reconfigurable transparent optical add-drop multiplexers (OADMs) and optical cross-connects (OXCs). A simple new approach to dispersion management in ULH dense-wavelength-division-multiplexing (DWDM) transparent optical networks is proposed and implemented, which enables excellent transmission performance while avoiding dispersion compensation on a connection-by-connection basis. We demonstrate "broadcast-and-select" node architectures that take full advantage of this method. Our implementation of signal leveling ensures minimum variations of path-averaged power among the wavelength-division-multiplexing (WDM) channels between the dynamic gain-equalizing nodes and results in uniform nonlinear and spontaneous-emission penalties across the WDM spectrum. We achieve 80/spl times/10.7-Gb/s DWDM networking over 4160 km (52 spans/spl times/80 km each) of all-Raman-amplified symmetric dispersion-managed fiber and 13 concatenated OADMs or 320/spl times/320 wavelength-port OXCs with 320-km node spacing. The WDM channels use 50-GHz grid in C band and the simple nonreturn-to-zero (NRZ) modulation format. The measured Q values exhibit more than a 1.8-dB margin over the forward-error correction threshold for 10/sup -15/ bit-error-rate operation. We compare these results with point-to-point transmission of 80/spl times/10-Gb/s NRZ WDM signals over 4160 km without OADM/OXC and provide detailed characterization of penalties due to optical signal-to-noise-ratio degradation, filter concatenation, and crosstalk.  相似文献   

9.
A dense wavelength-division-multiplexing (WDM) transmission system with very-high-speed channels was investigated experimentally. A 10-Gb/s four-channel WDM optical transmission (total capacity of 40 Gb/s) over a 40-km dispersion-shifted fiber was achieved by using hybrid-integrated DFB-LD/driver modules for transmitters and two cascaded semiconductor optical amplifier (SOA) modules for receivers. The experiment confirmed that the SOA is applicable for WDM transmission systems with high bit rates because of its inherent wide bandwidth. The transmission capacity of 40 Gb/s, achieved using an intensity modulation/direct detection (IM/DD) scheme, is the highest ever reported. This technology will make possible ultralarge capacity (up to several-hundred gigabits per second) and long-haul transmission systems in the future  相似文献   

10.
The authors demonstrate the potential of using POLarization Shift Keying (POLSK) modulation format combined with semiconductor optical amplifiers (SOAs) in wavelength division multiplexing (WDM) transmission systems. The constant intensity of the POLSK modulation format allows for substantial removal of cross-gain-modulation impairments in SOAs so that practical amplifier spacing values (more than 100 km) are demonstrated in various different experimental configurations. Record WDM transmission experiments at 10 Gb/s by using SOA-based amplification are presented in short and medium reach system architectures using either single mode fiber or nonzero dispersion shifted fiber  相似文献   

11.
This paper describes an adaptive wavelength tunable optical filter, which is composed of an angle-tuned interference optical filter and an intelligent digital controller. The new angle-tuned interference filter consists of a dielectric interference optical filter and a piezoelectric angle-tuning mechanism. It achieves quick wavelength switching within 2.5 ms in a 30 nm tuning range and a sufficiently low crosstalk less than -30 dB. The intelligent digital controller has two functions: wavelength tracking and wavelength channel selection. Combining these technologies, we have developed a practical low-cost tunable filter suitable for a post-optical-amplifier filter in a high-sensitivity detection system and a channel selector in a WDM system that requires 10-100 ms channel selection time. With a wavelength tracking operation, we have confirmed -35 dBm high-sensitivity detection in 20 nm wavelength range in a 10 Gb/s system. We have also confirmed a wavelength channel selection operation within 18 ms in a three-channel wavelength division multiplexed (WDM) system whose channel spacing is 4.4 nm  相似文献   

12.
This paper describes recent technical challenges and the progress toward the realization of the optical transport network (OTN) based on 43 Gb/s channel. We describe the new digital frame format "OTU3: Optical Channel Transport Unit 3," which is standardized in ITU-T for OTN, for the enhancement of the network management capability in the OTN based on 43-Gb/s channels. We first proposed 43-Gb/s/ch dense wavelength-division multiplexing (DWDM) dispersion-managed transmission system using carrier-suppressed return-to-zero (CS-RZ) format that has several attractive features; it advances the evolution of OTN into 100 GHz-spaced long-haul DWDM transport networks. The first wavelength-division multiplexing (WDM) field trials confirmed the superiority of CS-RZ format in the DWDM transmission performance for the first time. The first 1 Tb/s (25 /spl times/ 43 Gb/s) WDM field trial confirmed the excellent network management capability of OTU3 in future data-centric OTN using the newly developed 43-Gb/s OTN line-terminal prototype.  相似文献   

13.
We theoretically investigate the performance limitations of subcarrier multiplexed (SCM) wavelength-division-multiplexing (WDM) systems using optical double-sideband (DSB) modulated, 16-quadrature amplitude-modulated (QAM) signals. The performance limitations are investigated using crosstalk power and SCM channel spacing for various transmission conditions, including impairment factors such as dispersion and fiber nonlinearities for a single wavelength channel first. The effects of WDM channel spacing on SCM systems with multiwavelength channels are also evaluated via the calculated bit error rate (BER) performance, based on the performance limitations found in the single-wavelength simulation. This enables us to provide guidelines for the design of SCM/WDM systems for fiber-to-the-home (FTTH) network in WDM–passive optical network (PON) architecture, based on the performance limitations.   相似文献   

14.
Fast optical frequency shift keying or wavelength shift keying (WSK) modulation offers advantageous features for applications in long haul communications and in optical labeling for packet routing. This includes simple demodulation by optical filtering and constant amplitude envelope providing tolerance to fiber nonlinear effects during transmission. In this paper we report on the generation of WSK signals up to 35 Gb/s with reuse of the wavelength tones for polarization multiplexing two independent 40 Gb/s DPSK signals. Transmission over a 50 km fiber link of the resultant three channel signal is also reported.  相似文献   

15.
We report on the first demonstration of all-optical label switching (AOLS) with 160 Gb/s variable length packets and 10 Gb/s optical labels. This result demonstrates the transparency of AOLS techniques from previously demonstrated 2.5 Gb/s to this 160 Gb/s demonstration using a common routing and packet lookup framework. Packet forwarding/conversion, optical label erasure/re-write and signal regeneration at 160 Gb/s is achieved using a WDM Raman enhanced all-optical fiber cross-phase modulation wavelength converter. It is also experimentally shown that this technique enables packet unicast and multicast operation at 160 Gb/s. The packet bit-error-rate is measured for all optical label switched 16 /spl times/ 10 Gb/s channels and error free operation is demonstrated after both label swapping and packet forwarding.  相似文献   

16.
This paper describes application areas, elemental technologies, and the feasibility of terrestrial terabit wavelength division multiplexing (WDM) transmission systems based on super-dense wavelength division multiplexing (DWDM) technologies with a channel spacing of 12.5 GHz. Numerical simulation results quantitatively show that the merit of super-DWDM transmission is the elimination of the need for dispersion compensation over the several hundreds of kilometers of standard single-mode fiber (SMF). To support super-DWDM transmission, the prototype of a multiwavelength generator, which consists of just an intensity modulator and a phase modulator, is developed as a small-size WDM light source with high-wavelength stability. We use this prototype to conduct a 1.28-Tb/s (512 channels /spl times/ 2.5 Gb/s) transmission experiment with a channel spacing of 12.5 GHz over 320 km (80 km /spl times/ 4 span) of standard SMF without dispersion compensation. The potential and the feasibility of super-DWDM transmission with a channel spacing of 12.5 GHz for terrestrial systems is confirmed by the numerical simulation and the transmission experiment.  相似文献   

17.
Automatic gain control using an all-optical feedback loop in in-line erbium-doped fiber amplifiers (EDFA's) used in hybrid analog/digital wavelength division multiplexing (WDM) systems was studied. It is found that the signal level variation for the digital channels can be maintained within a range /spl les/3-dB between the presence and dropout of the analog channel when the narrowband feedback is centered at the amplified spontaneous emission (ASE) peak (/spl sim/1532 nm) with loop loss ranging between 13-22 dB. Robust transmission at 2.5 Gb/s without measurable power penalty was obtained for the digital channels when the EDFA was saturated by either the analog or the control lasing signal.  相似文献   

18.
An integrated device consisting of two cascaded 2×2 crosspoint switches has been utilized to demonstrate a highly functional integrated routing and wavelength converting switch architecture at a data rate of 2.488 Gb/s. This aliens simultaneous space switching and wavelength conversion of optical signals in wavelength-division multiplexed (WDM) networks. Eye diagrams and bit-error-rate (BER) curves are displayed for wavelength conversion and simultaneous routing of a separate signal  相似文献   

19.
To fully utilize a limited gain bandwidth of about 35 nm (4.4 THz) in an erbium-doped fiber amplifier, an increase in signal spectral efficiency is required. In this paper, we investigate the key technologies to achieve terabit/second wavelength-division multiplexing (WDM) systems with over 1 bit/s/Hz spectral efficiency. Optical duobinary signals, which have narrower optical spectra than conventional intensity modulation signals, were applied to such dense WDM systems. The measured minimum channel spacing for 20-Gbit/s optical duobinary signals was 32 GHz and a spectral efficiency of over 0.6 bit/s/Hz was reached. By using polarization interleave multiplexing, spectral efficiency was expected to reach 1.2 bit/s/Hz in an ideal case with no polarization dependencies along the transmission lines. In such ultradense WDM systems with narrower channel spacing, stabilizing the wavelengths of laser diodes is an important issue for achieving stable operation over long periods. To do this, we developed a simple and flexible wavelength stabilization system which uses a multiwavelength meter. The wavelengths for 116 channels with 35-GHz spacing were stabilized within ±150 MHz. The stabilization system is applicable to ultradense WDM signals with a spectral efficiency of over 1 bit/s/Hz by employing wavelength interleave multiplexing and an optical selector switch. On the basis of these investigations, we demonstrated a 2.6-Tbit/s (20 Gbit/s×132 channels) WDM transmission by using optical duobinary signals. In addition, 1.28-Tbit/s (20 Gbit/s×64 channels) WDM transmission with a high spectral efficiency of 1 bit/s/Hz was achieved by using polarization interleave multiplexing  相似文献   

20.
An investigation of system upgradability of installed fiber-optic cable was conducted using 40-Gb/s wavelength-division-multiplexing (WDM) signals toward multiterabit optical networks. A field trial of 63-channel 40-Gb/s dispersion-managed soliton WDM signal transmission was successfully demonstrated over 320-km (4 /spl times/ 80-km) installed nonzero-dispersion-shifted fibers. The average Q factor of 15.4 dB was obtained, and very stable long-term bit-error-ratio performance was confirmed without polarization-mode dispersion compensation. This system upgradability investigation in the field environment provided the confidence to introduce 40-Gb/s technologies and effectively to construct multiterabit optical networks following the demand increase in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号