首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
风力发电机变桨距系统采用传统PID控制,不仅超调大、调节时间长、精度低,而且在超过额定风速时,风电机组的输出功率波动比较剧烈,误差较大。该文采用粒子群优化算法改进变论域模糊PID控制器,仿真结果表明:粒子群优化变论域的模糊PID控制器具有良好的动态性能及对风速扰动的鲁捧性,可以平稳地输出功率。  相似文献   

2.
针对变速变桨风力机如何在额定风速以下时追踪最大风能利用系数,对在额定风速以上时抑制输出功率的波动进行了研究。在风速测控系统中,提出了低风速时运用自适应转矩控制策略;高风速时为了稳定输出功率,根据估计的有效风速给出合适的前馈桨距角,实现动态前馈补偿与传统PID反馈结合的变桨距控制策略。基于Bladed和MATLAB软件平台,应用此方法对某2MW变速变桨风电机组进行仿真比较。结果表明:此系统在低风速时能够更好追踪最大功率点,在高风速时能有效稳定输出功率。  相似文献   

3.
随着风电技术的不断成熟与发展,变桨距风力发电机的优越性显得更加突出:既能提高风力机运行的可靠性,又能保证高的风能利用系数和不断优化的输出功率曲线。采用变桨距机构的风力机可使叶轮重量减轻,整机的受力状况大为改善,使风电机组有可能在不同风速下始终保持最佳转换效率,输出功率最大,从而提高系统性能。随着风电机组功率等级的增加,采用变桨距技术已是大势所趋。目前,变桨执行机构主要有两种:液压变桨距和电动变桨距,按其控制方式可分为统一变桨和独立变桨两种。  相似文献   

4.
风力发电机组设计向单机容量大型化、高可靠性、高效率、低成本的方向发展。现阶段,大型风电机组主要采用双馈异步感应发电机或永磁同步发电机,前者是主流。风电场的风向和风速时刻在变化,风电机组要适应这种变化,通过调节桨距角、风机转速等参数,满足一定的功率控制需求。本文采用模糊滑模变结构控制技术,通过变桨距角的方式,实现了风力发电的恒功率控制。  相似文献   

5.
风力发电技术是把风能转变为电能的技术。通过风力发电机实现,利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。在能源短缺和环境趋向恶化的今天,风能作为一种可再生清洁能源,日益为世界各国所重视和开发。由于风能开发有着巨大的经济、社会、环保价值和发前景,近20年来风电技术有了巨大的进步,风电开发在各种能源开发中增速最快。与风电发达国家相比,中国在风力发电机制造技术和风力发电控制技术方面存在较大差距,目前国内只掌握了定桨距风机的制造技术和刚刚投入应用的兆瓦级永磁直驱同步发电机技术,在风机的大型化、变桨距控制、主动失速控制、变速恒频等先进风电技术方面还有待进一步研究和应用不管怎么说,风力发电技术已经愈加成熟,风力发电控制技术也更加完善,总之风力发电前景广阔,我国对风力发电的研究也会更加深入。  相似文献   

6.
与失速型风力发电机组相比,变速恒频风力发电机组运行在额定风速以上时,输出功率平稳,且传动系统具有良好的柔性.针对兆瓦级变速恒频风电机组的上述特点,本文从硬件组成、系统控制和安全保护等三方面介绍了兆瓦级变速恒频风电机组的控制系统,并对大型风电机组整机控制和安全保护功能进行了深入的研究与试验.  相似文献   

7.
通过对风力机空气动力学特性的分析,提出了风力机组变速运行最大能量捕获及变桨距控制实现功率稳定的理论依据.详细研究了变速运行控制方法、变桨距机构设计及控制方案.数字仿真表明,在风速低于额定风速时变速运行捕获能量比恒速运行捕获能量大;节距调节控制可以很好地使输出功率稳定在额定功率左右.  相似文献   

8.
在介绍风力发电机电动变桨距系统的基础上,以实现对桨距角变化的精确控制为目的,对电动变桨距系统进行设计并提出对变桨距系统控制器的设计.针对风力发电系统的非线性、时变和强耦合的特点,将模糊控制引入到变桨距控制中,在高于额定风速的情况下,根据主控制器由风速变化计算出的桨距角变化量,调节桨叶的位置.最后利用Simulink构建...  相似文献   

9.
功率平稳输出与最大风能跟踪是风电机组在高、低两种不同风速下的控制目标,而当前变桨距控制的研究集中在高风速段,大部分是基于平衡点处的线性化模型,风力机偏离平衡点运行的动态性能较差,也不适用于低风速段。因此,针对高、低风速段的不同控制要求,设计了双模变桨距控制器:低风速段采用基于最大功率点跟踪(MPPT)的双PI控制,高风速段采用模糊自适应PID控制器,根据风速变化实时切换控制策略。最后,在Simulink平台下,通过与传统的PI控制器进行了仿真比较,验证了双模变桨距控制的控制效果。  相似文献   

10.
风能具有能量密度低、随机性和不稳定性等特点,风力发电机组变成了复杂的非线性不确定系统,风力发电系统控制器设计存在困难.本文将云模型应用于风力发电机组桨叶转角控制,其控制器采用一维多规则云发生器进行设计.当风速高于额定风速时,能够有效地调整桨叶转角随着风速的变化而变化,从而调节风力发电机输出功率维持在额定值附近.最后在MATLAB/SIMULINK中进行仿真,结果表明云模型转桨控制器比模糊转桨控制器具有更好的控制效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号