首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid selectivity of several commercial lipases was evaluated in the hydrolysis of high-erucic acid rapeseed oil (HEARO). The lipase ofPseudomonas cepacia catalyzed virtually complete hydrolysis of the oil (94–97%), while that ofGeotrichum candidum discriminated strongly against erucic acid, especially in esterification. A two-step process is suggested for obtaining a highly enriched erucic acid in which theG. candidum lipase is employed to selectively esterify the fatty acid residues of unsaturated C-18, and shorter chain acids, from a mixture of HEARO fatty acids obtained from total hydrolysis of the oil withP. cepacia lipase.  相似文献   

2.
Lipase-catalyzed enrichment of long-chain polyunsaturated fatty acids   总被引:4,自引:13,他引:4  
Lipase hydrolysis was evaluated as a means of selectively enriching long-chain ω3 fatty acids in fish oil. Several lipases were screened for their ability to enrich total ω-3 acids or selectively enrich either docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA). The effect of enzyme concentration, degree of hydrolysis, and fatty acid composition of the feed oil was studied. Because the materials that were enriched in long-chain ω3 acids were either partial glycerides or free fatty acids, enzymatic reesterification of these materials to triglycerides by lipase catalysis was also investigated. Hydrolysis of fish oil by eitherCandida rugosa orGeotrichum candidum lipases resulted in an increase in the content of total ω3 acids from about 30% in the feed oil to 45% in the partial glycerides. The lipase fromC. rugosa was effective in selectively enriching either DHA or EPA, resulting in a change of either the DHA/EPA ratio or the EPA/DHA ratio from approximately 1:1 to 5:1. Nonselective reesterification of free fatty acids or partial glycerides that contained ω3 fatty acids could be achieved at high efficiency (approximately 95% triglycerides in the product) by using immobilizedRhizomucor miehei lipase with continuous removal of water.  相似文献   

3.
The γ-linolenic acid (Z,Z,Z-6,9,12-octadecatrienoic acid, GLA) present in borage oil free fatty acids was concentrated in esterification reactions that were catalyzed by several preparations of the acyl-specific lipase ofGeotrichum candidum. In this manner, a 95% recovery of the GLA originally present in borage oil (25% GLA) was obtained as a highly enriched fatty acid fraction with a GLA content of >70%. Other fatty acids concentrated in this fraction were the monounsaturated fatty acids with chainlengths of C-20 and longer that were present in the oil. An immobilized preparation ofG. candidum on silica gel also was used for the enrichment of GLA in borage oil. In this instance, a 75% recovery of GLA was obtained, and the supported lipase was reusable (three cycles) with minimal loss in activity. Presented in part at the 84th Annual Meeting of the American Oil Chemists’ Society, Anaheim, California, May 1993.  相似文献   

4.
Three lipases, isolated previously in our laboratory, each with different fatty acid and positional specificities, and a known lipase fromCandida cylindracea were screened for concentrating docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids in glycerides.Geotrichum candidum lipase was found to be suitable for their concentration in glycerides. Tuna oil was treated at 30°C with this lipase for 16 h, and 33.5% hydrolysis resulted in the production of glycerides containing 48.7% of DHA and EPA. The hydrolysis was not increased despite adding further lipase, so the glycerides were extracted, and the reaction was repeated. The second hydrolysis produced glycerides containing 57.5% of DHA and EPA in a 54.5% yield, with recovery of 81.5% of initial DHA and EPA. Of the total glycerides, 85.5% were triglycerides. These results showed thatG. candidum lipase was effective in producing glycerides that contained a high concentration of polyunsaturated fatty acids in good yield.  相似文献   

5.
Isolation of erucic acid from rapeseed oil by lipase-catalyzed hydrolysis   总被引:4,自引:0,他引:4  
Three lipases were compared for their ability to hydrolyze high erucic acid rapeseed oil, with the objective of concentrating the erucic acid in a single glyceride fraction. Lipase fromPseudomonas cepacia released all fatty acids rapidly and did not result in selective distribution of erucic acid.Geotrichum candidum lipase released C20 and C22 fatty acids extremely slowly, resulting in their accumulation in the di- and triglyceride fractions. Less than 2% of the total erucic acid was found in the free fatty acid (FFA) fraction. Lipase fromCandida rugosa released erucic acid more slowly than C20 and C18 fatty acids at 35°C but only resulted in a limited accumulation of the erucic acid in the di- and triglyceride fractions. However, when hydrolysis catalyzed byC. rugosa lipase was carried out below 20°C, the reaction mixture solidified and was composed solely of FFAs and diglycerides. The diglyceride fraction contained approximately 95% erucic acid while about 20% of the total erucic acid was found in the FFA fraction. It is concluded that hydrolysis at low temperature withC. rugosa lipase results in a higher purity of erucic acid in the glyceride fraction than can be obtained withG. candidum lipase, but with considerable loss of erucic acid to the FFA fraction.  相似文献   

6.
This report examines the use of lipases for isolating fatty acids with Δ5 unsaturation from the seed oil ofLimnanthes alba, or meadowfoam. Seven lipase types and three enzyme configurations (immobilized, “free” and reversemicellar encapsulated) were examined. All lipases discriminated against Δ5 acids to varying degrees, but the degree of discrimination was independent of enzyme configuration. Lipase-catalyzed esterification of meadowfoam oil’s free fatty acids was much more successful for isolating Δ5 acyl groups than was lipolysis. For example, esterification directed byChromobacterium viscosum lipase yielded a free fatty acid product containing >95% of the Δ5 acyl groups at >99% purity.  相似文献   

7.
The lipase‐catalyzed hydrolysis of castor, coriander, and meadowfoam oils was studied in a two‐phase water/oil system. The lipases from Candida rugosa and Pseudomonas cepacia released all fatty acids from the triglycerides randomly, with the exception of castor oil. In the latter case, the P. cepacia lipase discriminated against ricinoleic acid. The lipase from Geotrichum candidum discriminated against unsaturated acids having the double bond located at the Δ‐6 (petroselinic acid in coriander oil) and Δ‐5 (meadowfoam oil) position or with a hydroxy substituent (ricinoleic acid). The expression of the selectivities of the G. candidum lipase was most pronounced in lipase‐catalyzed esterification reactions, which was exploited as part of a two‐step process to prepare highly concentrated fractions of the acids. In the first step the oils were hydrolyzed to their respective free fatty acids, in the second step a selective lipase was used to catalyze esterification of the acids with 1‐butanol. This resulted in an enrichment of the targeted acids to approximately 95—98% in the unesterified acid fractions compared to the 70—90% content in the starting acid fractions.  相似文献   

8.
Lipase-catalyzed fractionation of conjugated linoleic acid isomers   总被引:14,自引:0,他引:14  
The abilities of lipases produced by the fungus Geotrichum candidum to selectively fractionate mixtures of conjugated linoleic acid (CLA) isomers during esterification of mixed CLA free fatty acids and during hydrolysis of mixed CLA methyl esters were examined. The enzymes were highly selective for cis-9,trans-11–18∶2. A commercial CLA methyl ester preparation, containing at least 12 species representing four positional CLA isomers, was incubated in aqueous solution with either a commercial G. candidum lipase preparation (Amano GC-4) or lipase produced from a cloned high-selectivity G. candidum lipase B gene. In both instances selective hydrolysis of the cis-9,trans-11–18∶2 methyl ester occurred, with negligible hydrolysis of other CLA isomers. The content of cis-9,trans-11–18∶2 in the resulting free fatty acid fraction was between 94 (lipase B reaction) and 77% (GC-4 reaction). The commercial CLA mixture contained only trace amounts of trans-9,cis-11–18∶2, and there was no evidence that this isomer was hydrolyzed by the enzyme. Analogous results were obtained with these enzymes in the esterification in organic solvent of a commercial preparation of CLA free fatty acids containing at least 12 CLA isomers. In this case, G. candidum lipase B generated a methyl ester fraction that contained >98% cis-9,trans-11–18∶2. Geotrichum candidum lipases B and GC-4 also demonstrated high selectivity in the esterification of CLA with ethanol, generating ethyl ester fractions containing 96 and 80%, respectively, of the cis-9,trans-11 isomer. In a second set of experiments, CLA synthesized from pure linoleic acid, composed essentially of two isomers, cis-9,trans-11 and trans-10,cis-12, was utilized. This was subjected to esterification with octanol in an aqueous reaction system using Amano GC-4 lipase as catalyst. The resulting ester fraction contained up to 97% of the cis-9,trans-11 isomer. After adjustment of the reaction conditions, a concentration of 85% trans-10,cis-12–18∶2 could be obtained in the unreacted free fatty acid fraction. These lipase-catalyzed reactions provide a means for the preparative-scale production of high-purity cis-9,trans-11–18∶2, and a corresponding CLA fraction depleted of this isomer.  相似文献   

9.
Processes that combine enzymic and physical techniques have been studied for concentrating and separating eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil.Candida rugosa lipase was used in hydrolysis reactions to concentrate these acids in the glyceride fraction. By controlling the degree of hydrolysis, two products have been obtained, one enriched in total n-3(∼50%), the other enriched in DHA and depleted in EPA (DHA∼40%, EPA∼7%). The glyceride fraction from these reactions was recovered by evaporation and converted back to triglycerides by partial enzymic hydrolysis, followed by enzymic esterification. Both reactions were carried out withRhizomucor miehei lipase. DHA-depleted free fatty acids from aC. rugosa hydrolysis were fractionated to increase the EPA level (∼30%) and re-esterified to triglycerides by reaction with glycerol andR. miehei.  相似文献   

10.
We have developed an efficient esterification for the synthesis of triacylglycerol (TAG) containing conjugated linoleic acids (CLA) using a blend of two powdered lipases. Two pairs of blended lipases promoted the esterification. Rhizomucor miehei lipase, plus Alcaligenes sp. lipase and Penicillium cammembertii MAG and DAG lipase plus Alcaligenes sp. lipase were used. At the optmal ratio of two lipases, the content of TAG containing CLA (TAG-CLA) in all glycerols reached 82–83% after 47 h using 1 wt% of lipases. With R. miehei lipase plus Alcaligenes sp. lipase, the reaction time to obtain ca. 60% of TAG-CLA was one-third of that needed with R. miehei lipase alone. The optimal ratio of two lipases differed between these two pairs. The optimal ratio was 70–80 wt% of R. miehei lipase in the last stage of the reaction, whereas it was over a wide range of 10–90 wt% for P. camembertii lipase. In the blend of R. miehei lipase plus Alcaligenes sp. lipase, activity remained very high after 10 cycles of esterification (every 47 h) and could be used in the industrial production of TAG-CLA.  相似文献   

11.
In an attempt to concentrate the content of DHA (docosahexaenoic acid) in a glyceride mixture containing triglyceride, diglyceride and monoglyceride, fish oil was hydrolyzed with six kinds of microbial lipase. After the hydrolysis, free fatty acid was removed and fatty acid components of the glyceride mixtures were analyzed. When the hydrolysis withCandida cylindracea lipase was 70% complete, the DHA content in the glyceride mixture was three times more than that in the original fish oil. The EPA (eicosapentaenoic acid) content became almost 70% of the original fish oil. Hydrolysis with other lipases did not result in an increase in the DHA content in the glyceride mixtures. Hydrolysis of DHA-rich tuna oil (DHA content is about 25%) withCandida cylindracea lipase resulted in 53% DHA in the glyceride mixture. The EPA content, however, remained close to that of the original tuna oil. In this report, the acyl chain specificity of lipases is evaluated in terms of hydrolysis resistant value (HRV). HRV is the ratio between the DHA contents in the glyceride mixture of hydrolyzed oil and original oil. HRV clearly indicates differences in hydrolysis between DHA and other fatty acids (e.g., saturated and monoenoic acids).  相似文献   

12.
Immobilized lipase preparations from seedlings of rape (Brassica napus L.) andMucor miehei (lipozyme) used as biocatalysts in esterification and hydrolysis reactions discriminate strongly against γ-linolenic and docosahexaenoic acids/acyl moieties. Utilizing this property, γ-linolenic acid contained in fatty acids of evening primrose oil has been enriched seven to nine-fold, from 9.5 to almost 85% by selective esterification of the other fatty acids with butanol. Similarly, docosahexaenoic acid of cod liver oil has been enriched four to five-fold, from 9.4 to 45% by selective esterification of fatty acids (other than docosahexaenoic acid) with butanol. As long as the reaction is stopped before reaching equilibrium, very little of either γ-linolenic acid or docosahexaenoic acid are converted to butyl esters, which results in high yields of these acids in the unesterified fatty acid fraction.  相似文献   

13.
The relative reactivities of several long-chain fatty acids in esterifications with 1-butanol catalyzed by lipases ofGeotrichum candidum were evaluated. As has been noted previously, these lipases are not uniformly highly selective forcis-9 unsaturated fatty acids. However, the lipase preparations examined do uniformly discriminate against fatty acids having a chainlength greater than C-18 such as erucic acid. The reactivities of γ-linolenic and ricinoleic acid were also low compared to that of oleic. An examination of the effect of the alcohol upon the relative reactivities of acids showed that one could enhance fatty acid selectivity by proper choices of alcohol. For example, oleic acid esterifies 2.5 times faster than palmitic acid with 1-butanol catalyzed by Amano GC-4 lipase, but esterifies over 50 times faster with 2-methyl-1-propanol or cyclopentanol.  相似文献   

14.
γ-Linolenic acid (Z,Z,Z-6,9,12-octadecatrienoic acid), a very important polyunsaturated fatty acid is found in the free fatty acid fraction prepared by the hydrolysis of borage oil. Our aim was to enrich this fraction in γ-linolenic acid using selective esterification. Candida rugosa lipase was used as catalyst after immobilization on the following ion-exchange resins: Amberlite IRC50, IRA35, IRA93, and Duolite A7, A368, A568. In every case, immobilization modified the lipae’s specificity: palmitic, stearic, oleic, and linoleic acids were preferentially esterified compared to γ-linolenic acid, thus allowing a γ-linolenic acid enrichment of 3.0.  相似文献   

15.
An attempt was made to enrich arachidonic acid (AA) from Mortierella single-cell oil, which had an AA content of 25%. The first step involved the hydrolysis of the oil with Pseudomonas sp. lipase. A mixture of 2.5 g oil, 2.5 g water, and 4000 units (U) Pseudomonas lipase was incubated at 40°C for 40 h with stirring at 500 rpm. The hydrolysis was 90% complete after 40 h, and the resulting free fatty acids (FFA) were extracted with n-hexane (AA content, 25%; recovery of AA, 91%). The second step involved the selective esterification of the fatty acids with lauryl alcohol and Candida rugosa lipase. A mixture of 3.5 g fatty acids/lauryl alcohol (1:1, mol/mol), 1.5 g water, and 1000 U Candida lipase was incubated at 30°C for 16 h with stirring at 500 rpm. Under these conditions, 55% of the fatty acids were esterified, and the AA content in the FFA fraction was raised to 51% with a 92% yield. The long-chain saturated fatty acids in the FFA fraction were eliminated as urea adducts. This procedure raised the AA content to 63%. To further elevate the AA content, the fatty acids were esterified again in the same manner with Candida lipase. The repeated esterification raised the AA content to 75% with a recovery of 71% of its initial content.  相似文献   

16.
An attempt was made to enrich arachidonic acid (AA) from Mortierella single-cell oil, which had an AA content of 25%. The first step involved the hydrolysis of the oil with Pseudomonas sp. lipase. A mixture of 2.5 g oil, 2.5 g water, and 4000 units (U) Pseudomonas lipase was incubated at 40°C for 40 h with stirring at 500 rpm. The hydrolysis was 90% complete after 40 h, and the resulting free fatty acids (FFA) were extracted with n-hexane (AA content, 25%; recovery of AA, 91%). The second step involved the selective esterification of the fatty acids with lauryl alcohol and Candida rugosa lipase. A mixture of 3.5 g fatty acids/lauryl alcohol (1:1, mol/mol), 1.5 g water, and 1000 U Candida lipase was incubated at 30°C for 16 h with stirring at 500 rpm. Under these conditions, 55% of the fatty acids were esterified, and the AA content in the FFA fraction was raised to 51% with a 92% yield. The long-chain saturated fatty acids in the FFA fraction were eliminated as urea adducts. This procedure raised the AA content to 63%. To further elevate the AA content, the fatty acids were esterified again in the same manner with Candida lipase. The repeated esterification raised the AA content to 75% with a recovery of 71% of its initial content.  相似文献   

17.
Two immobilized lipases, nonspecific SP435 from Candida antarctica and sn-1,3 specific IM60 from Rhizomucor miehei, were used as biocatalysts for the restructuring of borage oil (Borago officinalis L.) to incorporate capric acid (10:0, medium-chain fatty acid) and eicosapentaenoic acid (20:5n-3) with the free fatty acids as acyl donors. Transesterification (acidolysis) reactions were carried out in hexane, and the products were analyzed by gas-liquid chromatography. The fatty acid profiles of the modified borage oil were different from that of unmodified borage oil. Higher incorporation of 20:5n-3 (10.2%) and 10:0 (26.3%) was obtained with IM60 lipase, compared to 8.8 and 15.5%, respectively, with SP435 lipase. However, SP435 lipase was able to incorporate both 10:0 and 20:5n-3 fatty acids at the sn-2 position, but the IM60 lipase did not. Solvents with log P values between 3.5 and 4.5 supported the acidolysis reaction better than those with log P values between −0.33 and 3.0.  相似文献   

18.
The isolation of tocopherols and sterols together as a concentrate from sunflower oil deodorizer distillate was investigated. The sunflower oil deodorizer distillate was composed of 24.9% unsaponifiable matter with 4.8% tocopherols and 9.7% sterols, 28.8% free fatty acid (FFA) and 46.3% neutral glycerides. The isolation technology included process steps such as biohydrolysis, bioesterification and fractional distillation. The neutral glycerides of the deodorizer distillates were hydrolyzed byCandida cylindracea lipase. The total fatty acids (initial FFA plus FFA from neutral glycerides) were converted into butyl esters withMucor miehei lipase. The esterified product was then fractionally distilled in a Claisen-vigreux flask. The first fraction, which was collected at 180–230°C at 1.00 mm of Hg for 45 min, contained mainly butyl esters, hydrocarbons, oxidized products and some amount of free fatty acids. The fraction collected at 230–260°C at 1.00 mm Hg for 15 min was rich in tocopherols (about 30%) and sterols (about 36%). The overall recovery of tocopherols and sterols after hydrolysis, esterification and distillation were around 70% and 42%, respectively, of the original content in sunflower oil deodorizer distillate.  相似文献   

19.
Free fatty acids from fish oil were prepared by saponification of menhaden oil. The resulting mixture of fatty acids contained ca. 15% eicosapentaenoic acid (EPA) and 10% docosahexaenoic acid (DHA), together with other saturated and monounsaturated fatty acids. Four commercial lipases (PS from Pseudomonas cepacia, G from Penicillium camemberti, L2 from Candida antarctica fraction B, and L9 from Mucor miehei) were tested for their ability to catalyze the esterification of glycerol with a mixture of free fatty acids derived from saponified menhaden oil, to which 20% (w/w) conjugated linoleic acid had been added. The mixtures were incubated at 40°C for 48h. The ultimate extent of the esterification reaction (60%) was similar for three of the four lipases studied. Lipase PS produced triacylglycerols at the fastest rate. Lipase G differed from the other three lipases in terms of effecting a much slower reaction rate. In addition, the rate of incorporation of omega-3 fatty acids when mediated by lipase G was slower than the rates of incorporation of other fatty acids present in the reaction mixture. With respect to fatty acid specificities, lipases PS and L9 showed appreciable discrimination against esterification of EPA and DHA, respectively, while lipase L2 exhibited similar activity for all fatty acids present in the reaction mixture. The positional distribution of the various fatty acids between the sn-1,3 and sn-2 positions on the glycerol backbone was also determined.  相似文献   

20.
Purification of docosahexaenoic acid (DHA) was attempted by a two-step enzymatic method that consisted of hydrolysis of tuna oil and selective esterification of the resulting free fatty acids (FFA). When more than 60% of tuna oil was hydrolyzed with Pseudomonas sp. lipase (Lipase-AK), the DHA content in the FFA fraction coincided with its content in the original tuna oil. This lipase showed stronger activity on the DHA ester than on the eicosapentaenoic acid ester and was suitable for preparation of FFA rich in DHA. When a mixture of 2.5 g tuna oil, 2.5 g water, and 500 units (U) of Lipase-AK per 1 g of the reaction mixture was stirred at 40°C for 48 h, 83% of DHA in tuna oil was recovered in the FFA fraction at 79% hydrolysis. These fatty acids were named tuna-FFA-Ps. Selective esterification was then conducted at 30°C for 20 h by stirring a mixture of 4.0 g of tuna-FFA-Ps/lauryl alcohol (1:2, mol/mol), 1.0 g water, and 1,000 U of Rhizopus delemar lipase. As a result, the DHA content in the unesterified FFA fraction could be raised from 24 to 72 wt% in an 83% yield. To elevate the DHA content further, the FFA were extracted from the reaction mixture with n-hexane and esterified again under the same conditions. The DHA content was raised to 91 wt% in 88% yield by the repeated esterification. Because selective esterification of fatty acids with lauryl alcohol proceeded most efficiently in a mixture that contained 20% water, simultaneous reactions during the esterification were analyzed qualitatively. The fatty acid lauryl esters (L-FA) generated by the esterification were not hydrolyzed. In addition, L-FA were acidolyzed with linoleic acid, but not with DHA. These results suggest that lauryl DHA was generated only by esterification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号