首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
六方氮化硼纳米片(h-BNNSs)作为类石墨烯的二维片状纳米材料,可在低填充量下显著提高高分子材料的导热率,同时保持其良好的电绝缘性能。由于六方氮化硼层与层之间的作用力远比石墨层的大,通过液相剥离六方氮化硼粉体制备纳米片更具实际意义。文中综述了制备六方氮化硼纳米片的6种液相剥离方法及其剥离机理,并介绍了由其制备的复合材料的性能(导热性能、透光性能、力学性能和磁性等),以期对发展导热聚合物基复合材料有所帮助。  相似文献   

2.
近年来,随着电子技术领域朝着小型化,微型化发展,散热问题成了进一步提高其性能和可靠性的主要制约因素之一。六方氮化硼因为优异导热性、绝缘性、力学性能和结构稳定性,其复合材料在微电子领域发挥出巨大的优势。本文从六方氮化硼纳米片层的制备及提高六方氮化硼复合材料导热率两方面,介绍了目前相关领域的研究现状。  相似文献   

3.
六方氮化硼(h-BN)是一种石墨烯类二维材料,具有很高的导热性。当将其剥离成二维氮化硼纳米片(BNNSs)时,因其层状材料特殊的电子性能和高比表面积,使其制备技术受到很多研究人员的关注,其剥离方法以机械球磨和液相超声为主。综述了氮化硼二维纳米材料的几种剥离方法、原理及其优缺点,将在塑料导热材料中呈现较好的应用前景。  相似文献   

4.
氮化硼纳米片(BNNSs)是一种新型二维纳米材料,具有极好的绝缘导热性能、力学性能、介电性能、化学稳定性和良好的生物相容性,被广泛应用于复合材料增强、导热复合材料、储氢、药物运输、催化载体、量子点等方面,逐渐成为研究的热点。氮化硼主要有六方(h-BN)、立方(c-BN)、菱方(r-BN)和纤维矿(w-BN)四种稳定结构,其中h-BN是与石墨相类似的层状结构,但其层间范德华力更强,这也给其剥离带来困难。迄今为止,人们参照石墨烯的制备探究出许多制备氮化硼纳米材料的方法,如微机械剥离法、液相剥离法、化学气相沉积法(CVD)和二次外延生长法等。这些方法虽各有优劣,但在大规模稳定生产晶体结构较为完整的BNNSs且剥离效率较高上均存在不足。采用低成本、高效率、高质量的方法制备出氮化硼纳米片是其产业化的关键。超临界流体兼具气体的扩散性质和液体的溶解能力,自从被引入到石墨烯的制备中取得了一些成果后,许多研究者也将其运用到BNNSs的制备上。目前,利用超临界CO_2在一定的温度和压力下能制备出厚度为2~6 nm的BNNSs,且BNNSs的结晶形态与原始的h-BN基本没有太大差异,得到的BNNSs悬浮液的浓度可高达0.24 mg/mL,辅助以剪切、超声波等手段后能有效提高其剥离效率。超临界有机溶剂一般有超临界甲醇、超临界N,N-二甲基甲酰胺,它们不仅能作为插层剂打开片层间距,而且是良好的分散剂,能防止纳米材料再次团聚。超临界有机溶剂能大大简化剥离过程,反应时间只有短短15 min,就能得到2~3层的无明显缺陷的BNNSs,产率约为10%。本文综述了超临界流体制备氮化硼纳米片的方法、原理、研究现状及其表征手法,讨论了提高剥离效率的各种方法及优缺点。超临界流体制备氮化硼纳米片设备单一、条件较易达成、产品质量高,为氮化硼纳米片的工业化生产提供了新的思路。  相似文献   

5.
通过液相机械剥离法制备了氮化硼纳米片(BNNS)并通过硅烷偶联剂共价修饰和多巴胺非共价修饰制备了双重改性的氮化硼纳米片(KDBNNS);利用反应诱导相分离,将KDBNNS分布在环氧树脂(EP)和聚醚砜(PES)的界面上构成导热通路,制备了KDBNNS/PES/EP复合材料。采用傅里叶变换红外光谱分析、热失重分析(TGA)和共聚焦扫描显微镜等方法对其进行表征。观测到在三元复合材料内的相分离连续界面上通过分布BNNS构筑了三维导热通路。研究表明当BNNS填料质量分数仅为3%时,复合材料的热导率即可达到0.394 W·m-1K-1,相较于纯环氧0.194 W·m-1K-1提高了103%。  相似文献   

6.
目的综述国内外氮化硼复合材料在包装领域的应用与进展,对未来氮化硼材料在包装领域的应用进行展望。方法整理归纳国内外文献,简单介绍氮化硼纳米片(BNNSs)的性质和制备方法,以及氮化硼复合材料的制备方法,重点整理分析氮化硼复合材料在包装领域的应用与进展。结果氮化硼具有独特的二维纳米片层结构和相互重叠的层层结构。添加BNNSs不仅可以明显提高复合材料的导热率、机械强度、绝缘性等,还可以改善复合材料的阻隔性能、力学性能、化学稳定性能、抗菌性能等。结论氮化硼复合材料具有热导率高、绝缘性好等优点,可应用于电子封装领域,并在阻燃、抗菌、防腐等包装材料领域具有不错的发展前景。  相似文献   

7.
高导热绝缘材料在应对日益严峻的电子元器件领域的热管理问题中的应用广泛,以氮化硼改性高分子基导热复合材料已成为其中的研究热点之一。引入具有高导热系数的氮化硼纳米材料,不仅可以解决高分子材料热导率低的问题,还能使得所制氮化硼改性高分子导热复合材料的力学性能、电绝缘性能和热稳定性能得到提升。文中简要介绍了氮化硼的结构特性及各种制备方法,结合课题组的研究工作综述了六方氮化硼从功能化、取向分散、三维导热网络构建3个方面对高分子材料的改性,以及六方氮化硼和零维、一维、多元导热填料协同杂化高分子材料。最终,提出现阶段六方氮化硼改性高分子导热复合材料存在的主要问题,并对未来的研究方向进行了分析与展望。  相似文献   

8.
六方氮化硼纳米片(BNNS)具有优异的导热性、绝缘性、化学稳定性、耐高温性,在电子器件热管理领域具有广泛的应用前景。然而,如何快速、规模化地获得高质量的BNNS仍是其商业应用所面临一个重要挑战。液相剥离法是制备BNNS最有前景的方法之一,具有工艺简单、纳米片质量高、可规模化生产等优点。本文首先总结了近年来BNNS的液相剥离方法,重点介绍3种用于液相剥离BNNS的方法(h-BN剥离的溶剂选择、h-BN的非共价键改性以及共价键改性);其次,深入探讨了上述3种方法的剥离机理以及存在的不足(有机溶剂污染环境问题,部分修饰剂相容性差,共价键改性困难)。随着剥离分散机理的深入研究,液相剥离法将满足高质量高效率的BNNS的制备需求,使其在电子器件热管理领域发挥重要作用。  相似文献   

9.
以二维六方氮化硼和三维纳米金刚石为导热填料通过原位聚合方式杂化填充到聚酰亚胺(PI)基体中制备导热绝缘复合材料。采用聚芳酰胺和4,4-二氨基二苯醚分别对氮化硼和纳米金刚石进行表面接枝改性,以提高有机-无机两相界面的相容性。通过扫描电子显微镜、导热仪、热重分析等方法对复合材料的结构和性能进行了表征。结果表明,不同粒径的导热填料混杂填充聚合物,利用协同效应可以提高堆砌密度,降低界面热阻,形成导热网络。当填料总质量分数为30%,改性氮化硼和纳米金刚石的质量比为9∶1时,复合材料的热导率达0.596 W/(m·K),是纯PI的3.5倍,同时复合材料仍具有较好的热稳定性和电绝缘性,满足微电子领域的应用需求。  相似文献   

10.
随着对新型高导热、高绝缘热界面材料需求的显著增加,具有多种优异性能的环氧树脂(EP)已被广泛用作导热复合材料的基体,然而其固有的低热导率限制了其实际应用.通过向EP中引入具有高导热系数及高绝缘性的氮化硼纳米片(BNNS)可有效弥补EP的缺陷,从而显著提高复合材料的综合性能.基于国内外研究,介绍了BNNS的不同制备方法,...  相似文献   

11.
六方氮化硼(h-BN)材料在物理、化学等方面具有优异的性能,其特有的形貌、结构导致其在导热填充材料、载体材料、吸附材料等领域有着极大的研究价值,在高科技领域中某些极限条件下更是必不可少的功能性材料,因此六方氮化硼材料的制备和性能是目前研究的热点。综述了六方氮化硼的基本性能,介绍了一些如何来制备六方氮化硼粉体的方法,并分析了制备过程中存在的问题,对其今后的应用发展进行了研究。  相似文献   

12.
采用超声处理方法将膨胀石墨剥离成微纳米石墨片,并以制备的微纳米石墨片为导热填料采用溶液共混法对聚偏氟乙烯(PVDF)进行改性,制备出微纳复合导热材料。通过扫描电子显微镜对其微观结构进行了表征,结果表明通过超声处理可以使膨胀石墨发生部分剥离得到微纳米石墨片。导热性能测试结果表明,复合材料的导热性能随着超声处理时间的增加而增加;当超声处理时间为150min时,复合导热材料的导热系数是膨胀石墨填充PVDF的1.8倍。  相似文献   

13.
近年来,由于氮化硼纳米片独特的结构和性能,在物理、化学、电子及材料学界引起了广泛的研究兴趣。综述了氮化硼纳米片的制备方法,包括:化学气相沉积、化学剥离、超声剥离和球磨等方法,分析比较了各种方法的优缺点,并指出了氮化硼纳米片制备方法的发展趋势。  相似文献   

14.
六方氮化硼(hBN)是具有良好机械性能、高导热性和优异润滑性能的新型二维纳米材料,它具有增强聚合物纳米复合材料的潜力。将hBN均匀分散于生物基环氧单体糠醇缩水甘油醚(FgE)中,采用TEM和AFM对其在FgE中的分散状态进行了表征,成功制备了低于10层的hBN纳米片分散液。将FgE-hBN分散液作为环氧树脂的活性稀释剂,在不使用任何有机溶剂作稀释剂的情况下,制备了FgE-hBN/环氧复合材料。研究结果证明,在FgE-hBN的存在下,环氧树脂的疏水性、耐热性能、机械性能以及耐摩擦性能均得到极大提升。环氧树脂性能的提高主要归因于良好分散的hBN纳米片自身具有的高疏水性、强导热性、强机械性及高润滑等优异性能。  相似文献   

15.
在金属中添加陶瓷增强相是调控和改善金属材料结构和性能的重要途径。传统硬质陶瓷增强相难以满足金属材料日益严苛的应用需求。以氮化硼纳米片(boron nitride nanosheet,BNNS)和氮化硼纳米管(boron nitridenanotube,BNNT)为代表的纳米氮化硼具有极大的比表面积和优异的力学性能、热稳定性、化学稳定性等,是制备性能优异的金属基复合材料的理想增强相。系统总结了纳米氮化硼的种类和特征,综述了纳米氮化硼增强金属基复合材料的制备方法,归纳了纳米氮化硼增强Cu、Al、Ti复合材料的研究成果,总结了纳米氮化硼/金属复合材料的力学和摩擦学性能,并揭示了复合材料性能改善的机理。最后,展望了纳米氮化硼/金属复合材料的发展趋势。  相似文献   

16.
采用片状六方氮化硼(h-BN)与碳化硅晶须(SiCw)复配填料填充聚砜制备导热绝缘聚砜复合材料。选用熔融混合、辊炼混合和粉末混合3种不同的复合方式研究复合方式对聚砜复合材料导热绝缘性能的影响;选用模压成型和注塑成型研究成型方式对聚砜复合材料导热绝缘性能的影响。采用扫描电子显微镜、导热分析仪、超高电阻微电流测量仪对复合材料的断面微观形貌、导热性能、电绝缘性能进行了表征。结果表明,粉末混合对复合材料导热性能的提高效果明显优于熔融混合和辊炼混合,模压成型要优于注塑成型。由于热传导机制和电导机制的不同,制备方法对电绝缘性能的影响规律与对导热性能的影响规律相反。  相似文献   

17.
聚丙烯(PP)薄膜已广泛应用于薄膜型电容器和静电储能元件,但较低的介电常数限制了其进一步应用。本文以PP为基体材料,通过掺杂低含量的六方氮化硼(h-BN)二维纳米片,制备出聚丙烯/氮化硼纳米复合薄膜,以提高PP介电常数。其中一个关键因素是调控两相界面,以获得h-BN在PP中的良好分散和与基体的紧密结合。本论文通过超声剥离的方式制备少层氮化硼纳米片(BNNSs),并采用盐酸多巴胺(PDA)的非共价聚合反应进行包覆,得到了BNNSs@PDA。通过XRD、FT-IR和TEM表征了BNNSs@PDA的形貌,验证了核-壳结构的直径约150~200 nm,最小厚度约3 nm,有机PDA壳层平均厚度约为7nm。将BNNSs@PDA与PP复合得到薄膜,通过SEM、耐压测试仪、阻抗分析仪等设备对薄膜的微观结构、击穿性能和介电性能进行了研究。结果表明:在BNNSs@PDA的含量仅为1%(质量分数)时,复合材料的介电常数提高至5.62,损耗仅为0.006,理论储能密度高达7.42 J/cm~3,是纯PP薄膜的4.8倍。以上结果表明:BNNSs@PDA与PP良好的界面、二维纳米片在面内的取向分布,有效阻碍了外电场下电树枝的扩展,抑制了载流子的传输作用,同时引入了界面极化,从而有效提高了复合薄膜的介电和击穿性能。  相似文献   

18.
综述以六方氮化硼(hexagonal boron nitride, h-BN)粉体为原料制备氮化硼纳米片(boron nitride nanosheet, BNNS)的方法,归纳原料粒径、溶剂、超声波功率、磨球用量、助剂及预处理工艺等因素对BNNS制备的影响机理;概述h-BN和BNNS表面修改性的途径和方法,总结共价改性法和非共价改性法的机理和优缺点。同时提出:与化学剥离法、液相剥离法、机械剥离法和超临界剥离法相比,由于h-BN层间的π-π共轭和lip-lip作用,介质增强液相剥离法更加简便、高效,适合工业化批量生产,但是需选择恰当的剥离助剂并进一步揭示剥离过程的机理;由于h-BN结构中B、 N原子的化学惰性和局部共轭作用,纯h-BN和BNNS很难被基于化学反应的共价改性法进行直接修饰;h-BN及BNNS的非共价改性法操作简便,但以物理作用为基础的非共价改性结合力较弱,容易在高温、强酸碱等苛刻条件下失效。  相似文献   

19.
以甲基乙烯基硅橡胶(MVQ)为基体,片层氮化硼(BN)、球形Al_2O_3、碳纤维为填料,通过共混的方法制备了导热硅橡胶复合材料。利用热重分析仪(TGA),扫描电子显微镜(SEM),电子拉力试验机以及导热系数仪对复合材料的结构和性能进行了表征。结果表明:复合材料的热导率、热稳定性、力学性能、交联密度随着填料量的增加而增加。填料量达50vol.%时,尤以片层BN对热导率增加的效果突出,热导率从0.168增至1.8W/(m·K);碳纤维对复合材料的力学性能贡献最大,拉伸强度从0.48增加到2.98MPa;片层BN在橡胶基体中以面-面接触的方式均匀分散,更易于形成有效的导热网链。  相似文献   

20.
环氧树脂具有质量较轻、防腐性能和绝缘性能优良等一系列优势,因而被广泛应用于电气装备、高电压绝缘系统和航空航天等诸多领域。但环氧树脂的本征热导率较低,约为0.11~0.19 W/(m·K),如此低的热导率不利于系统及时有效地散热。氮化硼纳米片(BNNS)由于其优良的导热性能和绝缘性能,在高电压绝缘系统中具有广阔的应用前景。然而,BNNS制备流程复杂以及在液体中分散性差是目前限制其广泛应用的主要原因。采用一种简单而有效的蔗糖辅助机械化学剥离(SAMCE)方法来同时实现BNNS的剥离和改性,将蔗糖剥离改性得到的六方氮化硼(h-BN)加入环氧树脂中,添加改性h-BN的质量分数为15%时,复合材料的热导率可以达到0.51 W/(m·K),此时复合材料的热导率是纯环氧树脂材料的3.2倍,导热性能明显提升。为解释改性h-BN提升环氧树脂复合材料导热性能的机理,根据有效介质近似(EMA)理论模型反推计算得到改性前后h-BN/环氧树脂复合材料中填料颗粒与基质之间的界面热阻值,计算得到h-BN/环氧树脂复合材料的界面热阻为2.44×10-6m2·K/W,改性h-...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号