首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maximal covering location problem (MCLP) maximizes the population that has a facility within a maximum travel distance or time. Numerous extensions have been proposed to enhance its applicability, like the probabilistic model for the maximum covering location-allocation with a constraint in waiting time or queue length for congested systems, with one or more servers per service center. This paper presents a solution procedure for that probabilistic model, considering one server per center, using a column generation and covering graph approaches. The computational tests report interesting results for network instances up to 818 vertices. The column generation results are competitive solving the instances in reasonable computational times, reaching optimality for some and providing good bounds for the difficult instances.  相似文献   

2.
We consider in this paper a new lagrangean relaxation with clusters for the Manufacturer's Pallet Loading Problem (MPLP). The relaxation is based on the MPLP formulated as a Maximum Independent Set Problem (MISP) and represented in a conflict graph that can be partitioned in clusters. The edges inter clusters are relaxed in a lagrangean fashion. Computational tests attain the optimality for some instances considered difficult for a lagrangean relaxation. Our results show that this relaxation can be a successful approach for hard combinatorial problems modeled in conflict graphs. Moreover, we propose a column generation approach for the MPLP derived from the idea behind the lagrangean relaxation proposed.  相似文献   

3.
In this paper we introduce the multi-period incremental service facility location problem where the goal is to set a number of new facilities over a finite time horizon so as to cover dynamically the demand of a given set of customers. We prove that the coefficient matrix of the allocation subproblem that results when fixing the set of facilities to open is totally unimodular. This allows to solve efficiently the Lagrangean problem that relaxes constraints requiring customers to be assigned to open facilities. We propose a solution approach that provides both lower and upper bounds by combining subgradient optimization to solve a Lagrangean dual with an ad hoc heuristic that uses information from the Lagrangean subproblem to generate feasible solutions. Numerical results obtained in the computational experiments show that the obtained solutions are very good. In general, we get very small percent gaps between upper and lower bounds with little computation effort.  相似文献   

4.
This paper considers the tree of hub location problem. We propose a four index formulation which yields much tighter LP bounds than previously proposed formulations, although at a considerable increase of the computational burden when obtained with a commercial solver. For this reason we propose a Lagrangean relaxation, based on the four index formulation, that exploits the structure of the problem by decomposing it into independent subproblems which can be solved quite efficiently. We also obtain upper bounds by means of a simple heuristic that is applied at the inner iterations of the method that solves the Lagrangean dual. As a consequence, the proposed Lagrangean relaxation produces tight upper and lower bounds and enable us to address instances up to 100 nodes, which are notably larger than the ones previously considered in the literature, with sizes up to 20 nodes. Computational experiments have been performed with benchmark instances from the literature. The obtained results are remarkable. For most of the tested instances we obtain or improve the best known solution and for all tested instances the deviation between our upper and lower bounds, never exceeds 10%.  相似文献   

5.
The traditional capacitated warehouse location problem consists of determining the number and the location of capacitated warehouses on a predefined set of potential sites such that the demands of a set of customers are met. A very common assumption made in modeling this problem in almost all of the existing research is that the total capacity of all potential warehouses is sufficient to meet the total demand. Whereas this assumption facilitates to define a well‐structured problem from the mathematical modeling perspective, it is in fact restrictive, not realistic, and hence rarely held in practice. The modeling approach presented in this paper breaks away from the existing research in relaxing this very restrictive assumption. This paper therefore investigates the generalized problem of locating warehouses in a supply chain setting with multiple commodities with no restriction on the total capacity and the demand. A new integer programming formulation for this problem is presented, and an algorithm based on Lagrangean relaxation and decomposition is described for its solution. Three Lagrangean heuristics are proposed. Computational results indicate that reasonably good solutions can be obtained with the proposed algorithms, without having to use a general purpose optimizer.  相似文献   

6.
The metaheuristic heuristic concentration (HC) is applied here to the solution of large instances of the maximal covering location problem with high percentage coverage. In these instances, exact methods may be too cumbersome for practical use, and heuristics can allow faster solution times with near-optimal results. We examined the performance of HC based on its ability to approach the optimal solutions to these problems and the run times of the algorithm compared to LP-IP runtimes. Exact solutions, generated by linear programming and branch and bound, provided a benchmark for comparison when the LP-IP problems could be run to completion. In all cases, HC found solutions with objective values no worse than 0.543% below the best known LP-IP objective value. In several instances, LP-IP runtime ballooned to as much as 38.5 h, while HC took no longer than 1.6 h in any instance. In one particular instance, LP-IP took 38.5 h to terminate, while HC found a near-optimal solution (within 0.306% of optimality) in only 25 min. Furthermore, in 62.5% of the runs, the second stage of HC improved on the first stage 1-opt algorithm.  相似文献   

7.
Abstract: In this paper we address the problem of locating a maximum weighted number of facilities such that no two are within a specified distance from each other. A natural process of evolution approach, more specifically a genetic algorithm, is proposed to solve this problem. It is shown that through the use of a commercially available spreadsheet-based genetic algorithm software package, the decision-maker with a fundamental knowledge of spreadsheets can easily set up and solve this optimization problem. Also, we report on our extensive computational experience using three different data sets.  相似文献   

8.
In this study, a mixed-model flow line sequencing problem is considered. A mixed-model flow line is a special case of production line where products are transported on a conveyor belt, and different models of the same product are intermixed on the same line. We have focused on product-fixed, rate-synchronous lines with variable launching. Our objective function is minimizing makespan. A heuristic algorithm based on Lagrangean relaxation is developed for the problem, and tested in terms of solution quality and computational efficiency.  相似文献   

9.
A hub location problem (HLP) is a fertile research field, in the aspect of interdisciplinary studies, such as transportation, operation research, network design, telecommunication and economics. The location of hub facilities and allocation of non-hub nodes to hubs configure the backbone of HLPs. This study presents a new mathematical model for a reliable HLP by a new stochastic approach to minimize the total transportation cost and obtain maximum flows that the network can carry, when its link capacities are subject to stochastic degradations, as in a form of daily traffic, earthquake, flood, etc. We consider the road capacity reliability as a probability that ensures the maximum network capacity is greater than or equal to the total incoming flow to the network by considering the road capacity as random variable. As a result, this paper assumes that link capacities satisfy in a Truncated Erlang (TErl) distribution function. Due to complexity of the HLP, a meta-heuristic algorithm, namely differential evolution (DE) algorithm, is applied on the problem in order to achieve near-optimal solutions. Furthermore, the performance of the proposed algorithm (i.e., DE) is evaluated by the performance of the genetic algorithm (GA) applied on the given problem. Some computational experiments are presented to illustrate the effectiveness of the presented model and proposed algorithm. Finally the conclusion is provided.  相似文献   

10.
In this paper a two-level hierarchical model for the location of concentrators and routers in computers networks is presented. Given a set of candidate locations and the capacities of concentrators and routers the problem is to determine how many concentrators and routers should be used, where they should be located and which users to assign to each concentrator and which concentrators to allocate to each router. A Lagrangean relaxation is used to provide lower bounds for this problem, which are tentatively strengthened by incomplete optimization through the use of CPLEX. A tabu search meta-heuristic is then developed. Computational experiments are performed using a set of randomly generated problems.  相似文献   

11.
In this paper, we propose a discrete location problem, which we call the Single Source Modular Capacitated Location Problem (SS-MCLP). The problem consists of finding the location and capacity of the facilities, to serve a set of customers at a minimum total cost. The demand of each customer must be satisfied by one facility only and the capacities of the open facilities must be chosen from a finite and discrete set of allowable capacities. Because the SS-MCLP is a difficult problem, a lagrangean heuristic, enhanced by tabu search or local search was developed in order to obtain good feasible solutions. When needed, the lower bounds are used in order to evaluate the quality of the feasible solutions. Our method was tested computationally on randomly generated test problems some of which are with large dimensions considering the literature related to this type of problem. The computational results obtained were compared with those provided by the commercial software Cplex.  相似文献   

12.
In this paper, we present a dynamic uncapacitated facility location problem that considers uncertainty in fixed and assignment costs as well as in the sets of potential facility locations and possible customers. Uncertainty is represented via a set of scenarios. Our aim is to minimize the expected total cost, explicitly considering regret. Regret is understood as a measure, for each scenario, of the loss incurred for not choosing that scenario's optimal solution if that scenario indeed occurred. We guarantee that the regret for each scenario is always upper bounded. We present a mixed integer programming model for the problem and we propose a solution approach based on Lagrangean relaxation integrating a local neighborhood search and a subgradient algorithm to update Lagrangean multipliers. The problem and the solutions obtained are first analyzed through the use of illustrative examples. Computational results over sets of randomly generated test problems are also provided.  相似文献   

13.
余鹏  隽志才 《计算机应用研究》2013,30(11):3232-3236
提出了用于描述两层应急抢修系统选址问题的0-1整数线性规划模型, 该模型能保证整个应急抢修系统的服务质量。设计了求解该问题的两种核搜索算法, 在两种方法中分别根据原问题的线性松弛和拉格朗日松弛确定原问题的核问题和子问题, 从而大大减小了问题的规模。用提出的算法对56个计算实例进行求解, 算例计算结果表明, 与MOSEK软件直接求解得到的结果进行比较, 基于拉格朗日松弛的核搜索算法可以在相对较短的时间内求得较好的解, 这说明拉格朗日松弛对偶问题的最优解能为求解原问题提供非常有效的信息。  相似文献   

14.
We consider a vehicle routing problem with a heterogeneous fleet of vehicles having various capacities, fixed costs and variable costs. An approach based on column generation (CG) is applied for its solution, hitherto successful only in the vehicle routing problem with time windows. A tight integer programming model is presented, the linear programming relaxation of which is solved by the CG technique. A couple of dynamic programming schemes developed for the classical vehicle routing problem are emulated with some modifications to efficiently generate feasible columns. With the tight lower bounds thereby obtained, the branch-and-bound procedure is activated to obtain an integer solution. Computational experience with the benchmark test instances confirms that our approach outperforms all the existing algorithms both in terms of the quality of solutions generated and the solution time.  相似文献   

15.
In the Multiple disposal facilities and multiple inventory locations rollon–rolloff vehicle routing problem (M-RRVRP), one of the very important pickup and disposal problems in the sanitation industry, tractors move large trailers, one at a time, between customer locations such as construction sites and shopping centers, disposal facilities and inventory locations. In this paper, we model the M-RRVRP as a time constrained vehicle routing problem on a multigraph (TVRP-MG). We then formulate the TVRP-MG as a set partitioning problem with an additional constraint and describe an exact method for solving the TVRP-MG. This exact method is based on a bounding procedure that combines three lower bounds derived from different relaxations of the formulation of the problem. Further, we obtain a valid upper bound and show how this bounding procedure can transform the solution of a Lagrangean lower bound into a feasible solution.  相似文献   

16.
This paper presents a practical roll-on/roll-off routing (ROROR) problem arising in the collection of industrial waste. Skip containers, which are used for the waste collection, need to be distributed between, and collected from, a set of customers. Full containers must be driven to dump sites, while empty containers must be returned to the depot to await further assignments. Unlike, the traditional ROROR problem, where vehicles may transport one skip container at a time regardless of whether it is full or not, we consider cases in which a vehicle can transport up to eight containers, at most two of which can be full. We propose a generalized set partitioning formulation of the problem and describe a hybrid column generation procedure to solve it. A fast Tabu Search heuristic is used to generate new columns. The proposed methodology is tested on nine data sets, four of which are actual, real-world problem instances. Results indicate that the hybrid column generation outperforms a purely heuristic approach in terms of both running time and solution quality. High quality solutions to problems containing up to 100 orders can be solved in approximately 15 min.  相似文献   

17.
The aim of this study is to develop a Tabu Search (TS) procedure for the Extended Maximal Availability Location Problem (EMALP). This probabilistic location problem consists of locating the servers of the system so that the expected coverage of demand is maximized, in which a demand area is said to be covered if there is at least one server available within a given critical distance with a probability greater than or equal to a given reliability. The results obtained from this procedure are compared with those obtained from the Simulated Annealing (SA) procedure developed by Galvão et al. for the same problem. To the best of our knowledge, we are not aware of other methods proposed in the literature to solve the EMALP. The computational results show that in terms of the quality of the solutions, SA slightly outperforms TS for the smaller networks, while TS outperforms SA for the larger networks.  相似文献   

18.
In the mobile facility location problem (MFLP), one seeks to relocate (or move) a set of existing facilities and assign clients to these facilities so that the sum of facility movement costs and the client travel costs (each to its assigned facility) is minimized. This paper studies formulations and develops local search heuristics for the MFLP. First, we develop an integer programming (IP) formulation for the MFLP by observing that for a given set of facility destinations the problem may be decomposed into two polynomially solvable subproblems. This IP formulation is quite compact in terms of the number of nonzero coefficients in the constraint matrix and the number of integer variables; and allows for the solution of large-scale MFLP instances. Using the decomposition observation, we propose two local search neighborhoods for the MFLP. We report on extensive computational tests of the new IP formulation and local search heuristics on a large range of instances. These tests demonstrate that the proposed formulation and local search heuristics significantly outperform the existing formulation and a previously developed local search heuristic for the problem.  相似文献   

19.
In this paper, we introduce a capacitated plant location problem with multicommodity flow. Given a set of potential plant sites and a set of capacitated arcs linking plants, transshipment points and customers, the aim is to determine where to locate plants and how to move flows from open plants to customers through a set of transshipment points. This model extends the classical capacitated plant location problem by introducing a multicommodity flow problem in the distribution issue. The combination of the location problem and the flow distribution problem is reasonable and realistic since both of them belong to strategic planning horizons. We propose a Lagrangean-based method, including a Lagrangean relaxation, a Lagrangean heuristic and a subgradient optimization, to provide lower and upper bounds of the model. Then, we employ a Tabu search to further improve upper bounds provided by the Lagrangean procedure. The computational results demonstrate that our solution method is effective since gaps between the upper and lower bound are on average around 2%.  相似文献   

20.
In this paper, we describe a new approach to increase the possibility of finding integer feasible columns to a set partitioning problem (SPP) directly in solving the linear programming (LP) relaxation using column generation. Traditionally, column generation is aimed to solve the LP‐relaxation as quickly as possible without any concern for the integer properties of the columns formed. In our approach, we aim to generate columns forming an optimal integer solution while simultaneously solving the LP‐relaxation. Using this approach, we can improve the possibility of finding integer solutions by heuristics at each node in the branch‐and‐bound search. In addition, we improve the possibility of finding high‐quality integer solutions in cases where only the columns in the root node are used to solve the problem. The basis of our approach is a subgradient technique applied to a Lagrangian dual formulation of the SPP extended with an additional surrogate constraint. This extra constraint is not relaxed and is used to better control the subgradient evaluations and how the multiplier values are computed. The column generation is then directed, via the multipliers, to construct columns that form feasible integer solutions. Computational experiments show that we can generate optimal integer columns in a large set of well‐known test problems as compared to both standard and stabilized column generation, and simultaneously keep the number of columns smaller than standard column generation. This is also supported by tests on a case study with work‐shift generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号