首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: The objective of this study is to investigate the wet-milled-drug layering process which could significantly improve the dissolution rate and oral bioavailability of fenofibrate pellets.

Methods: Fenofibrate was milled with HPMC-E5 to prepare a uniform suspension in the micrometer and nanometer range, and this suspension was then layered on to sugar spheres to form the pellets (F1, F2).

Results: The particle size was significantly reduced (from 1000 µm to 1–10 µm and 400?nm) but the fenofibrate in suspension retained its crystallinity from the results of DSC and PXRD investigations. The dissolution rate of F1-F2 and Antara® capsules was 55.47 %, 61.27 % and 58.43 %, respectively, in 0.01?mol/L SDS solution over 60?min. In addition, F1, F2, and Antara® capsules were given orally to 6 beagle dogs to determine the bioavailability. The Cmax of F1, F2 (8.21?±?2.55 and 9.33?±?2.37 μg/mL)and the AUC(0?t) of F1, F2 (152.46?±?78.89 and 172.17?±?67.58 μg/mL·h)were higher than those of Antara® (6.02?±?3.34 μg/mL and 89.82?±?46.46 μg/mL·h) and, F1, F2 reached their Cmax earlier than Antara® (F1: 2.0?±?1.1?h; F2: 1.8?±?1.2?h; Antara®: 6.0?±?8.9?h).

Conclusion: These results show that the wet-milled-drug layering technique is a powerful method to improve the dissolution rate and the bioavailability of fenofibrate.  相似文献   

2.
Objective: The purpose of this study was to investigate the dissolution and oral bioavailability of an immediate-release tablet involving wet grinding of a poorly water-soluble drug, fenofibrate. Methods: The milled suspension was prepared using a Basket Dispersing Mill in the presence of a hydrophilic polymer solution and then granulated with common excipients, and compressed into an immediate-release tablet with blank microcrystalline cellulose granules. Results: Compared with unmilled tablets (56% within 30 minutes), the dissolution of wet-milled tablets (about 98% in 30 minutes) was markedly enhanced. No significant decrease in the dissolution rate (96% in 30 minutes) of the wet-milled tablet was observed after 3 months under 40°C and 75% relative humidity storage. In addition, the oral bioavailability of the wet-milled tablets (test) and Lipanthyl® supra-bioavailability tablets (reference) was determined in beagle dogs after a single dose (160 mg fenofibrate) in a randomized crossover, own-control study. The results suggested that both the area under the plasma concentration–time curve (AUC(0?t) = 46.83 ± 11.09 μg/mL h) and the mean peak concentration of the test (Cmax = 4.63 ± 1.71 μg/mL) were higher than the reference (AUC(0?t) = 35.12 ± 10.97 μg/mL h, Cmax = 2.11 ± 0.08 μg/mL). The relative bioavailability of the wet-milled tablet was approximately 1.3-fold higher. Furthermore, the apparent rate of absorption of fenofibrate from the wet-milled tablet (Tmax = 2.63 hours) was faster than that from Lipanthyl® (Tmax = 3.75 hours). Conclusion: These results indicated that the dissolution and the bioavailability of fenofibrate were significantly enhanced by wet-grinding process. So, this shows that wet grinding is a powerful technique to improve the bioavailability for poorly water-soluble drugs, especially for Biopharmaceutics Classification System Class II compounds.  相似文献   

3.
The objective of this study was to develop doxofylline-loaded sustained-release pellets coated with Eudragit® NE30D alone (F1) or blend of Eudragit® RL30D/RS30D (F2) and further evaluate their in vitro release and in vivo absorption in beagle dogs. Doxofylline-loaded cores with a drug loading of 70% (w/w) were prepared by layering drug-MCC powder onto seed cores in a centrifugal granulator and then coating them with different kinds of polymethacrylates in a bottom-spray fluidized bed coater. Dissolution behaviour of these formulations was studied in vitro under various pH conditions (from pH 1.2 to pH 7.4) to evaluate the effect of pH on drug release profiles. It was found that F2 produced a better release profile than F1 did and two different release mechanisms were assumed for F1 and F2, respectively. The relative bioavailability of the sustained-release pellets was studied in six beagle dogs after oral administration in a fast state using a commercially available immediate release tablet as a reference. Coated with Eudragit® NE30D and a blend of Eudragit® RL30D/RS30D (1:12), at 5% and 8% coating level, respectively, the pellets acquired perfect sustained-release properties and good relative bioavailability, with small fluctuation of drug concentration in plasma. But combined use of mixed Eudragit® RL30D/RS30D polymers with proper features as coating materials produced a longer Tmax, a lower Cmax and a little higher bioavailability compared to F1 (coated with Eudragit® NE30D alone). The Cmax, Tmax and relative bioavailability of F1 and F2 coated pellets were 15.16 μg/ml, 4.17 h, 97.69% and 11.41 μg/ml, 5 h, 101.59%, respectively. Also a good linear correlation between in vivo absorption and in vitro release was established for F1 and F2, so from the dissolution test, formulations in vivo absorption can be properly predicted.  相似文献   

4.
Background: Simvastatin is classified as a Biopharmaceutics Classification System (BCS) Class-II compound with a poor aqueous solubility and an acceptable permeability through biomembranes. The strategy of increasing the in vitro dissolution has the potential to enhance the oral bioavailability when using nanosized crystalline drugs. Objective: The aim of this article was to prepare simvastatin nanocrystals to enhance its dissolution rate and bioavailability by exploiting sonoprecipitation. Methods: Injecting 0.50% (w/v) methanol solution of simvastatin into 0.20% (w/v) water solution of F68 under sonication amplitude of 400?W and processing temperature of 3°C. Results: Simvastatin nanocrystal with average diameter of 360?±?9?nm could be obtained. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) confirmed the decreased crystallinity of nanoparticles stabilized by F68. The results of in vitro study demonstrated that the saturation solubility and dissolution rate of simvastatin nanocrystals were enhanced by 1 fold and 4 fold respectively, compared with crude simvastatin and the dissolution rate improved with the decrease in particle size. The C(max) and AUC((0-24?h)) values of simvastatin nanocrystal group were approximately 1.50-fold and 1.44-fold greater than that of simvastatin nanocrystal group, respectively. Additionally, the T(max) of simvastatin nanocrystal group was 1.99?h, comparing to 2.88?h of reference group. Conclusion: Sonoprecipitation method can produce small and uniform simvastatin nanocrystals with an improved saturation solubility, dissolution rate and oral bioavailability.  相似文献   

5.
In this study, once-a-day tetramethylpyrazine phosphate (TMPP) sustained-release pellets were successfully prepared. The pellets cores were carried out in extrusion-spheronization machine and then coated in fluidized-bed. To optimize cumulative release profile, two different coating systems with the same the TMPP pellets cores were employed. The first coating system consisted of surlease, containing HPMC E5 (0.1% w/w), i.e., P1. The second coating system only consisted of surlease, i.e., P2. The two kinds of coating systems were both given coating levels in terms of weight gain of 10%. The resulted once-a-day TMPP sustained-release pellets (OTSP), the mixture of P1 and P2 with the weight proportion of 1:1, were filled in a capsule (150?mg TMPP/capsule). The relative bioavailability of OTSP was studied in six beagle dogs after oral administration using a commercial TMPP tablets as a reference. The C(max) and T(max) for OTSP and TMPP tablets were 213.06?ng/mL, 2.50?h and 3402.13?ng/mL, 0.33?h, respectively and the relative bioavailability of P3 was 97.18% compared with TMPP tablets. Based on the results, it was indicated that TMPP sustained-release pellets and TMPP conventional tablets were bioequivalent.  相似文献   

6.
The objective of this study was to develop doxofylline-loaded sustained-release pellets coated with Eudragit NE30D alone (F1) or blend of Eudragit RL30D/RS30D (F2) and further evaluate their in vitro release and in vivo absorption in beagle dogs. Doxofylline-loaded cores with a drug loading of 70% (w/w) were prepared by layering drug-MCC powder onto seed cores in a centrifugal granulator and then coating them with different kinds of polymethacrylates in a bottom-spray fluidized bed coater. Dissolution behaviour of these formulations was studied in vitro under various pH conditions (from pH 1.2 to pH 7.4) to evaluate the effect of pH on drug release profiles. It was found that F2 produced a better release profile than F1 did and two different release mechanisms were assumed for F1 and F2, respectively. The relative bioavailability of the sustained-release pellets was studied in six beagle dogs after oral administration in a fast state using a commercially available immediate release tablet as a reference. Coated with Eudragit NE30D and a blend of Eudragit RL30D/RS30D (1:12), at 5% and 8% coating level, respectively, the pellets acquired perfect sustained-release properties and good relative bioavailability, with small fluctuation of drug concentration in plasma. But combined use of mixed Eudragit RL30D/RS30D polymers with proper features as coating materials produced a longer T(max), a lower C(max) and a little higher bioavailability compared to F1 (coated with Eudragit NE30D alone). The C(max), T(max) and relative bioavailability of F1 and F2 coated pellets were 15.16 microg/ml, 4.17 h, 97.69% and 11.41 microg/ml, 5 h, 101.59%, respectively. Also a good linear correlation between in vivo absorption and in vitro release was established for F1 and F2, so from the dissolution test, formulations in vivo absorption can be properly predicted.  相似文献   

7.
Naringin (NA) is one of typical flavanone glycosides widely distributed in nature and possesses several biological activities including antioxidant, anti-inflammatory, and antiapoptotic. The aim of this study was to develop solid dispersion (SD) and to improve the dissolution rate and oral bioavailability of NA. NA–SD was prepared by the traditional preparation methods using PEG6000, F68, or PVP K30 as carrier at different drug to carrier ratios. According to the results of solubility and in vitro dissolution test, the NA–PEG6000 (1:3) SD was considered as an optimal formulation to characterize by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry and powder X-ray diffraction. Furthermore, oral bioavailabilities of NA–PEG6000 (1:3) SD and NA–suspension with the same dosage were investigated in SD rats. The results confirmed the formation of SD and the pharmacokinetic parameters of NA–PEG6000 (1:3) SD (Cmax?=?0.645?±?0.262?µg/ml, AUC0–t?=?0.471?±?0.084?µg/ml?h) were higher than that of NA–suspension (Cmax?=?0.328?±?0.183?µg/ml, AUC0–t =?0.361?±?0.093?µg/ml?h). Based on the results, the SD is considered as a promising approach to enhance the dissolution rate and oral bioavailability of NA.  相似文献   

8.
The objective of the present study was to develop stable pellets-layered Simvastatin (SIM) nanosuspensions with improved dissolution and bioavailability. The nanosuspensions were prepared with 7% HPMC, antioxidant 0.03% butylated hydroxyanisole and 0.2% citric acid (m/v) by low temperature grinding. After that, SDS with SIM was in a ratio of 1:5 (m/m), was evenly dispersed in the nanosuspensions. Then, they were layered on the surface of sugar pellets. The mean particle size of the SIM nanosuspensions was 0.74 µm, and 80.6% of the particles was below 1 µm in size. The pellets could re-disperse into nanoparticle status in the dissolution medium. In 900?mL pH 7.0 phosphate solutions, the dissolution of the layered pellets was better than that of commercial tablets. Also, nearly 100% of the drug dissolved from the pellets within 5?min under sink conditions. During the stability studies, SIM pellets exhibited good physical and chemical stability. The relative bioavailability of SIM and Simvastatin β-hydroxy acid (SIMA) for nanosuspensions layered pellets compared with commercial tablets was 117% and 173%, respectively. The bioavailability of SIMA was improved significantly (p < 0.05), confirming the improvement of bioavailability. Thus, the present study demonstrates that the pellet-layered SIM nanosuspensions improved both the dissolution and bioavailability of SIM.  相似文献   

9.
Introduction: The focus of this work was to produce delayed-release capsules containing riboflavin (vitamin B2, as API) layered pellets. Riboflavin therapy is indicated in patients with a riboflavin deficiency, which usually occurs in conjunction with malabsorption, alcoholism or a protein-calorie deficiency and rarely as the sole vitamin deficiency. Riboflavin is readily absorbed from the upper gastrointestinal tract by a specific transport mechanism. The dissolution rate of coated capsules was controlled through the coating of the capsules and the thickness of the coating layer.

Methods: The core pellets (Cellet 300) were loaded with a 10% aqueous solution of sodium riboflavin 5′-phosphate by a layering technique in a coating pan. Hard capsules were filled with riboflavin layered pellets and coated with Eudragit NE polymer with different coating layer thicknesses. The dissolution was tested in gastric and intestinal fluids with the half-change method. The dissolution profiles were analyzed with the use of different mathematical models and an attempt was made to predict the optimum coating film thickness that ensures the required degree and rate of dissolution.

Results: A new solid dosage form was developed which can enhance the bioavailability of riboflavin. RRSBW distribution and the Chapman–Richards growth function were used to fit the dissolution profiles. Statistical analysis indicated that the best products were described by the Chapman–Richards equation. The results were utilized to create a theoretical model suitable for prediction of the optimum film thickness that ensures the required release of riboflavin.  相似文献   


10.
Abstract

The drug release characteristics of three oral formulations (one conventional and 2 extended-release) of nifedipine were evaluated using a flow-through apparatus. The experiments were conducted for 4 to 24 hours using water or phosphate buffer (0.05 or 0.1 M; pH 7.4) with or without solubilizing agent, Tween, as a dissolution medium at a flow rate of 12.5 mL/min. The drug concentrations were determined using an HPLC method based on ratios of peak heights corresponding to UV absorbances at 254 nm for nifedipine and nitrendipine (internal standard). Dissolution characteristics in various media correspond to the nifedipine solubility in the medium. Peak nifedipine concentrations with 0.05 M phosphate buffer containing 0.5% Tween were significantly higher than those in the medium without Tween (21.5±1.0 vs 8.3±0.2 μg/mL, p c 0.001). Using a 0.05 M phosphate buffer with no Tween, the products tested showed distinct dissolution profiles representative of the respective formulation type. The conventional release product (10 mg) showed a higher mean peak nifedipine concentration (Cmax,d) of 49.5±2.4 pg/mL (p < 0.001) attained at (tmax,d) 0.46±0.05 h as compared to those of modified-release products. The corresponding mean values for the modified-release tablets were 8.3±0.2 and 2.6±.3 μg/mL for Cmax,d, and 0.28±0.03 and 12.0±3.8 h for tmax,d for the 20 and 30 mg tablets, respectively. Area under the concentration-time curves (AUCo-t,d) for the 10, 20 and 30 mg formulations were 12.3±0.4,20.5±2.6 and 32.6±3.7 μg.h/mL, respectively (p < 0.001). As the dissolution profiles are similar to those of plasmakerum drug concentrations-time profiles obtained from clinical studies, application of this dissolution method, along with the derived in vitro drug-release kinetics parameters for potential correlation with in vivo parameters are discussed. The results of this study show that, compared to the USP dissolution method using apparatus 1 or 2, the flow-through dissolution system offers a potentially better alternative to assess drug release characteristics for different types of formulations, especially for drugs of low aqueous solubility such as nifedipine.  相似文献   

11.
The bioavailability of 3 brands of cephalexine (tablets, capsules and suspension) using a solution as a reference standard was evaluated in 8 healthy volunteers in a crossover design. Single oral doses of each product were administered at intervals of 1 week. Statistical analysis of the cumulative urinary amount of cephalexine excreted after 12 h, indicated no significant differences among them. Moment analysis was used to estimate the mean dissolution and mean absorption time, showing that dissolution is the rate limiting step in tablets and capsules.  相似文献   

12.
This work was aimed at investigating the preparation of β‐cyclodextrin‐microcrystalline cellulose pellets by means of a high‐shear mixer, both in the absence or in the presence of ibuprofen as model drug. Drug loading of pellets was accomplished by means of two alternative techniques: 1) solution layering or 2) powder layering. The prepared pellets were characterised in terms of size distribution, shape factor, friability and dissolution rate. The interaction between ibuprofen and β‐cyclodextrin was monitored by Differential Scanning Calorimetry (DSC). Micro Fourier Transform Infrared spectroscopy (MicroFTIR) was applied to determine the distribution of components within each pellet on a micro scale. Pellets with narrow size distribution and containing up to about 90% of BCD were prepared using water as binder. The process yield resulted around 84 and 63% for drug‐free and medicate pellets respectively. Drug loaded pellets with favourable technological and biopharmaceutical characteristics can be obtained both by powder or solution layering techniques. The latter proved to be more suitable for producing pellets with high drug contents, reduced friability and high drug dissolution rates.  相似文献   

13.
A solid form of self-microemulsifying drug delivery system (Solid SMEDDS) was developed by spray-drying with dextran as the inert solid carrier, to improve the oral bioavailability of a poorly water-soluble drug, fenofibrate. The optimized liquid SMEDDS, composed of Labrafil M 1944 CS/Labrasol/Capryol PGMC (15/75/10%v/v) with 10% w/v fenofibrate gave a z-average diameter of around 240?nm. There was no significant difference in the mean droplet size and size distribution of the emulsions obtained from the liquid and solid forms of SMEDDS. Solid state characterizations of solid SMEDDS showed that the crystal state of fenofibrate in solid SMEDDS was converted from crystalline to amorphous form. Solid SMEDDS had significantly higher dissolution rates than the drug powder, due to its fast self-emulsification in the dissolution media. Furthermore, the AUC value of solid SMEDDS was twofold greater than that of the powder, indicating this formulation greatly improved the oral bioavailability of drug in rats. Thus, these results suggest that solid SMEDDS could be used as an effective oral solid dosage form to improve dissolution and oral bioavailability of fenofibrate.  相似文献   

14.
Abstract

The bioavailability of 3 brands of cephalexine (tablets, capsules and suspension) using a solution as a reference standard was evaluated in 8 healthy volunteers in a crossover design. Single oral doses of each product were administered at intervals of 1 week. Statistical analysis of the cumulative urinary amount of cephalexine excreted after 12 h, indicated no significant differences among them. Moment analysis was used to estimate the mean dissolution and mean absorption time, showing that dissolution is the rate limiting step in tablets and capsules.  相似文献   

15.
The aim of this study was to develop Cyclosporin A (CsA) sustained-release pellets which could maintain CsA blood concentration within the therapeutic window throughout dosing interval and to investigate the in vitro–in vivo correlation (IVIVC) in beagle dogs. The CsA sustained-release pellets (CsA pellets) were prepared by a double coating method and characterized in vitro as well as in vivo. Consequently, the CsA pellets obtained were spherical in shape, with a desirable drug loading (7.18?±?0.17?g/100?g), good stability and showed a sustained-release effect. The Cmax, Tmax and AUC0–24 of CsA pellets from the in vivo pharmacokinetics evaluation was 268.22?±?15.99?ng/ml, 6?±?0?h and 3205.00?±?149.55?ng·h/ml, respectively. Compared with Neoral®, CsA pellets significantly prolonged the duration of action, reduced the peak blood concentration and could maintain a relatively high concentration level till 24?h. The relative bioavailability of CsA pellets was 125.68?±?5.37% that of Neoral®. Moreover, there was a good correlation between the in vitro dissolution and in vivo absorption of the pellets. In conclusion, CsA pellets which could ensure a constant systemic blood concentration within the therapeutic window for 24?h were prepared successfully. Meanwhile, this formulation possessed a good IVIVC.  相似文献   

16.
Abstract

Context: Gabapentin was selected to formulate oral controlled release dry suspension because of short biological half life of 5–7?h and low bioavailability (60%). Gabapentin is a bitter drug so an attempt was made to mask its taste.

Objective: To formulate and evaluate controlled release dry suspension for reconstitution to increase the bioavailability and to control bitter taste of drug.

Materials and methods: Cyclodextrin based nanosponges were synthesized by previously reported melt method. The nanosponge–drug complexes were characterized by FTIR, DSC and PXRD as well as evaluated for taste and saturation solubility. The complexes were coated on Espheres by a suspension layering technique followed by coating with ethyl cellulose and Eudragit RS-100. A dry powder suspension for reconstitution of the microspheres was formulated and evaluated for taste, redispersibility, in vitro dissolution, sedimentation volume, leaching and pharmacokinetics.

Results and discussion: The complexes showed partial entrapment of drug nanocavities. Significant decrease in solubility (25%) was observed in the complexes than pure drug in different media. The microspheres of nanosponge complexes showed desired controlled release profile for 12?h. Insignificant drug leaching was observed in reconstituted suspension during storage for 7 days at 45?°C/75% RH. Nanosponges effectively masked the taste of Gabapentin and the coating polymers provided controlled release of the drug and enhanced taste masking. The results of in vivo studies showed increase in bioavailability of controlled release suspension by 24.09% as compared to pure drug.

Conclusion: The dry powder suspension loaded with microspheres of nanosponges complexes can be proposed as a suitable controlled release drug delivery for Gabapentin.  相似文献   

17.
This work was aimed at investigating the preparation of β-cyclodextrin-microcrystalline cellulose pellets by means of a high-shear mixer, both in the absence or in the presence of ibuprofen as model drug. Drug loading of pellets was accomplished by means of two alternative techniques: 1) solution layering or 2) powder layering. The prepared pellets were characterised in terms of size distribution, shape factor, friability and dissolution rate. The interaction between ibuprofen and β-cyclodextrin was monitored by Differential Scanning Calorimetry (DSC). Micro Fourier Transform Infrared spectroscopy (MicroFTIR) was applied to determine the distribution of components within each pellet on a micro scale. Pellets with narrow size distribution and containing up to about 90% of BCD were prepared using water as binder. The process yield resulted around 84 and 63% for drug-free and medicate pellets respectively. Drug loaded pellets with favourable technological and biopharmaceutical characteristics can be obtained both by powder or solution layering techniques. The latter proved to be more suitable for producing pellets with high drug contents, reduced friability and high drug dissolution rates.  相似文献   

18.
The bioavailability of high surface area danazol formulations was evaluated in a mouse model to determine what effect high supersaturation, as measured in vitro, has on the absorption of a poorly water soluble drug. Danazol, a biopharmaceutics classification system II (BCS II) compound, was used as the model drug. Evaporative precipitation into aqueous solution (EPAS) and spray freezing into liquid (SFL) technologies were used to prepare powders of danazol/PVP K-15 in a 1:1 ratio. The evaporative precipitation into aqueous solution (EPAS) and SFL compositions, physical mixture and commercial product were dosed by oral gavage to 28 male Swiss/ICR mice for each arm of the study. Samples were taken at time points ranging from 0.5 to 24 h. Pooled mouse serum was analyzed for danazol by high performance liquid chromatography (HPLC). Powders were analyzed for their ability to form supersaturated solutions through dissolution at concentrations of 1 mg/mL which was the dose delivered to the mouse models. Spray freezing into liquid (SFL) and EPAS compositions displayed higher C(max) at 392.5 ng/mL and 430.1 ng/mL, respectively, compared to the physical mixture (204.4 ng/mL) and commercially available danazol (199.3 ng/mL). The T(max) for all compositions studied was near the 1 h time point. The area under the curve (AUC) for the SFL composition was 2558 ng.h/mL compared to EPAS composition at 1534 ng.h/mL. The area under the curve (AUC) for the physical mixture and commercially available danazol were 672 ng.h/mL and 1519 ng.h/mL, respectively. The elimination rate constants for the EPAS composition, SFL composition, and physical mixture were similar at approximately 0.15 h(-1) where as the commercially available danazol capsules displayed an elimination rate constant of 0.103 h(-1). The extent of danazol absorption in the mouse model was higher for SFL composition compared to the less amorphous EPAS composition, physical mixture, and commercially available danazol powders. Both EPAS and SFL compositions were able to form supersaturated solutions. However, the SFL composition displayed a supersaturation of 33% above control and was able to maintain supersaturation for 90 min compared to the EPAS composition (27% supersaturation above control for 60 min). Through the use of a testing method for supersaturation, it was found that EPAS and SFL compositions achieve higher apparent solubilities when compared to the physical mixture and commercially available danazol capsules. Because of the greater extent of dissolution of the SFL composition, the bioavailability was enhanced in a mouse model.  相似文献   

19.
Flutamide (FLT) is a poorly soluble anticancer drug. Therefore, lyophilized dispersions (LDs) of FLT with polyvinylpyrrolidone (PVP) K30, polyethylene glycol (PEG) 6000, and pluronic F127 were prepared via lyophilization monophase solution technique with the aim of increasing its dissolution rate. FLT showed an A(L)-type phase solubility diagrams with PVP and PEG, whereas A(N)-type diagram was obtained with pluronic. The amount of residual tertiary butyl alcohol, determined by gas chromatography, was 0.015-0.021% w/w. Differential scanning calorimetry and X-ray diffractometry revealed that FLT-polymer 1:1 LDs were partially amorphous, whereas the 1:3 and 1:5 LDs were completely amorphous. After 6 months storage, polymers under study inhibited FLT recrystallization maintaining its amorphous form. The particle size of FLT-polymer LDs was between 0.81 and 2.13 μm, with a high surface area (268.43-510.82 m2/g) and porosity (354.01-676.23 e?3 mL/g). Also, the poor flow properties of FLT could be improved but to a limited extent. FLT dissolution was significantly enhanced with the fastest dissolution that was achieved using pluronic. After 30?min, about 66.52%, 78.23%, and 81.64% of FLT was dissolved from 1:5 FLT-PVP, PEG, and pluronic LDs, respectively, compared with only 13.45% of FLT. These data suggest that these polymers might be useful adjuncts in preparation and stabilization of amorphous immediate-release FLT LDs.  相似文献   

20.
Background: In this study, nanosuspension was prepared to improve the dissolution rate and bioavailability of lipophilic fenofibrate. Method: Melt emulsification method combined with high-pressure homogenization was adapted, and mixture of poloxamer188 and PVP K30 were selected as surfactants. This method consumed less energy and was more efficient than traditional homogenization of drug solid particles suspension directly. Results: The dissolution rate of fenofibrate nanosuspension was increased obviously, and the product was evaluated by pharmacokinetic characteristic in rats. The AUC0–36 h and Cmax of nanosuspensions were increased when compared with the reference formulations. No significant differences were found between the two nanosuspensions A and B, of which the mean particle sizes were 356 and 194 nm, respectively. Therefore, nanosuspensions may be a suitable delivery system to improve the bioavailability of those drugs with poor water solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号