首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In [1], we optimized single-user throughput by selecting the transmitted bit rate and payload size as a function of channel conditions. However, the approach did not consider a packet error rate (PER) constraint, and the payload size obtained could yield excessively high packet error rates. We propose and solve the optimization problem of maximizing throughput by varying the PHY layer data rate and the payload size subject to a packet error rate constraint. The resulting SNR thresholds for adapting the PHY data rate and the corresponding payload sizes are drastically different than those obtained without the PER constraint.  相似文献   

2.
The authors propose and study an adaptive error-control coding scheme for binary digital FM (BFM) mobile radio transmission. The scheme employs code combining through packet retransmissions. The number of transmissions of a packet is in proportion to the channel fading/noise levels, which is in contrast to time diversity techniques where a fixed number of repetitions of a data packet is performed even in the absence of channel errors. Furthermore, the receiver uses received signal envelopes as channel state information, which significantly improves the throughput and bit error rate (BER) performance. Performance of the proposed scheme is analyzed for frequency-flat Rayleigh fading channels with additive white Gaussian noise (AWGN), co-channel interference and random FM noise  相似文献   

3.
We investigate the user capacity, throughput, and delay characteristics of a mobile slotted ALOHA direct-sequence code-division-multiple-access (DS-CDMA) link with dedicated signatures under multipath fading and packet-rate adaptive antenna array signal reception. For a given system transmission bit rate, the packet size is designed to be sufficiently small to conform with the coherence time of the channel. Then, on an individual packet-by-packet basis, a phase-ambiguous spatial-temporal channel estimate is produced by a blind (unsupervised) eigensubspace procedure. The space-time channel estimate is phase corrected via a few pilot packet mid-amble bits and used for joint spatial-temporal multiple-access-interference suppression according to the principles of auxiliary-vector filtering. Subsequently, packet success probabilities are derived in the presence or absence of forward error correction and are used to evaluate the throughput and delay characteristics of the link.  相似文献   

4.
A reduced-rate retransmission (RRR) scheme is proposed for improving the throughput performance of spread-spectrum packet radio networks. The scheme takes advantages of the available multi-rate scalable source coding techniques. It assumes that several versions of a data packet with different sizes (number of information bits) are available. The transmission of a packet starts from its full-size version. If the full-size version is not correctly received, its half-size version is used in the retransmission. If further retransmissions are needed, the quarter-size version and so on are used. The shrunk packets are transmitted either in a minislot if the processing gain is kept the same, or occupying a slot duration by increasing the processing gain proportionally. In both cases, the effective signal to interference ratio for a packet is increased. As a result, the system throughput is improved. Theoretical and numerical results are provided in this paper which illustrate the throughput improvement. Another advantage of the proposed RRR scheme is that the packet-size reduction provides finer granules for link adaptation. Therefore, it is especially suitable for multimedia applications for which codes of variable rate for the source data are available and which can tolerate gracefully degraded quality of service. The performance of the proposed scheme in fading channels is also addressed.  相似文献   

5.
In error controlled packet reception, a packet is received only if its error probability can be kept below a predetermined level. Error probability control is achieved by posing a minimum signal to noise ratio (SNR) threshold with corresponding packet internal coding scheme, which upper-bounds the packet data rate. We first consider packet transmission over a single-user wireless fading channel with additive Gaussian noise. We derive the optimal SNR threshold that maximizes the communication throughput. We show under a set of generous conditions that the optimal SNR threshold in the low-SNR regime is proportional to the transmit power; the ratio depends neither on the packet internal coding scheme nor on the pre-determined error probability level. The result is then extended to packet multicasting where common information is transmitted to a group of receivers over fading channels.  相似文献   

6.
Kim  Young Yong  Li  San‐qi 《Wireless Networks》2000,6(6):481-492
The multipath fading channel modeling traditionally focuses on physical level dynamics such as signal strength and bit error rate. In this paper we characterize multipath fading channel dynamics at the packet level and analyze the corresponding data queueing performance in various environments. The integration of wireless channel modeling and data queueing analysis provides us a unique way to capture important channel statistics with respect to various wireless network factors such as channel bandwidth, mobile speed and channel coding. The second order channel statistics, i.e. channel power spectrum, is found to play an important role in the modeling of multipath fading channels. The data queueing performance is largely dependent on the interaction between the channel power spectrum and the data arrival power spectrum; whichever has lower frequency power will have more impact on queueing performance. Note that the data arrival power spectrum provides a measure of burstiness and correlation behavior of data packet arrivals. Throughout the paper, we use the Markov chain modeling technique to match the measured important channel statistics for both channel modeling and queueing analysis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Throughput analysis of TCP on channels with memory   总被引:5,自引:0,他引:5  
The focus of this paper is to analyze the relative sensitivity of the bulk throughput performance of different versions of TCP, viz., OldTahoe, Tahoe, Reno, and New Reno, to channel errors that are correlated. We investigate the performance of a single wireless TCP connection in a local environment by modeling the correlated packet loss/error process (e.g., as induced by a multipath fading channel) as a first-order Markov chain. A major contribution of the paper is a unified analytical approach which allows the evaluation of the throughput performance of various versions of TCP. The main findings of this study are that 1) error correlations significantly affect the performance of TCP, and in particular may result in considerably better performance for Tahoe and NewReno; and 2) over slowly fading channels which are characterized by significant channel memory, Tahoe performs as well as NewReno. This leads us to conclude that a clever design of the lower layers that preserve error correlations, naturally present on wireless links because of the fading behavior, could be an attractive alternative to the development or the use of more complex versions of TCP  相似文献   

8.
In asynchronous slow frequency hopping Bluetooth networks, packet collisions diminish the total link throughput. However, interference mitigation capability can reduce packet losses due to collisions. In this paper, an interference cancelling dual decision feedback (IC-DDF) Bluetooth receiver is proposed and its performance is evaluated for slow fading indoor channels. In addition to the bit error rate (BER) performance, the system level performance is evaluated by using the packet error rate (PER). To integrate the BER performance into the PER performance, a new geometric interpretation of packet error rate is introduced that uses an ensemble average of the received carrier to interference ratio (CIR). Also, a generalized packet collision probability is derived to analyze total link throughput.  相似文献   

9.
Expressions for the throughput and average packet delay for a Pure-ALOHA single-hop packet radio system operating in slow Rayleigh fading are derived. For noncoherent frequency-shift-keying (NCFSK), an exact closed form expression is presented. For coherent phase-shift-keying (CPSK) an excellent approximation for large packet sizes is derived. This approximation technique is valid in general for other modulation schemes and for other fading channel statistical characterizations. The packet length which maximizes the useful data throughput in slow Rayleigh fading is found. The results of this investigation indicate that a packet radio system can be designed with a modest link margin for fading and achieve identical throughput performance over a nonfading channel and a fading channel with only a small increase in average packet delay for the fading channel.  相似文献   

10.
Adaptive Modulation over Nakagami Fading Channels   总被引:29,自引:4,他引:25  
We first study the capacity of Nakagami multipath fading (NMF) channels with an average power constraint for three power and rate adaptation policies. We obtain closed-form solutions for NMF channel capacity for each power and rate adaptation strategy. Results show that rate adaptation is the key to increasing link spectral efficiency. We then analyze the performance of practical constant-power variable-rate M-QAM schemes over NMF channels. We obtain closed-form expressions for the outage probability, spectral efficiency and average bit-error-rate (BER) assuming perfect channel estimation and negligible time delay between channel estimation and signal set adaptation. We also analyze the impact of time delay on the BER of adaptive M-QAM.  相似文献   

11.
We consider cross-layer adaptive transmission for a single-user system with stochastic data traffic and a time- varying wireless channel. The objective is to vary the transmit power and rate according to the buffer and channel conditions so that the system throughput, defined as the long-term average rate of successful data transmission, is maximized, subject to an average transmit power constraint. When adaptation is subject to a fixed bit error rate (BER) requirement, maximizing the system throughput is equivalent to minimizing packet loss due to buffer overflow. When the BER requirement is relaxed, maximizing the system throughput is equivalent to minimizing total packet loss due to buffer overflow and transmission errors. In both cases, we obtain optimal transmission policies through dynamic programming. We identify an interesting structural property of these optimal policies, i.e., for certain correlated fading channel models, the optimal transmit power and rate can increase when the channel gain decreases toward outage. This is in sharp contrast to the water-filling structure of policies that maximize the rate of transmission over fading channels. Numerical results are provided to support the theoretical development.  相似文献   

12.
In this paper, we provide a saturation throughput analysis of the IEEE 802.11 protocol at the data link layer by including the impact of both transmission channel and capture effects in Rayleigh fading environment. Impacts of both non-ideal channel and capture effects, specially in an environment of high interference, become important in terms of the actual observed throughput. As far as the 4-way handshaking mechanism is concerned, we extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel. This way, any channel model characterizing the physical transmission medium can be accommodated, including AWGN and fading channels. We also extend the Markov model in order to consider the behavior of the contention window when employing the basic 2-way handshaking mechanism. Under the usual assumptions regarding the traffic generated per node and independence of packet collisions, we solve for the stationary probabilities of the Markov chain and develop expressions for the saturation throughput as a function of the number of terminals, packet sizes, raw channel error rates, capture probability, and other key system parameters. The theoretical derivations are then compared to simulation results confirming the effectiveness of the proposed models.  相似文献   

13.
In this paper, we analyze the effect of wireless link characteristics on throughput, packet delay, and packet loss rate in code-division multiple-access (CDMA) networks using carrier-sense multiple-access (CSMA) protocols. Although CSMA protocols are being extensively considered for applications in wireless networks, there is no comprehensive analysis of the effect of the link characteristics on packet level QoS. In our paper, link parameters are incorporated into the analysis through the probability of correct channel sensing, the probability of packet correct demodulation, and the channel fading rate. Although the imperfect channel sensing degrades the system performance, the analysis demonstrates that the CSMA system outperforms ALOHA even if the probability of incorrect channel sensing is higher than 10-1 . A number of numerical results quantitatively illustrates the impact of the channel fading rate and spatial correlation of the fading on packet level QoS. These results can be used for practical network design  相似文献   

14.
Optimal resource allocation for wireless video over CDMA networks   总被引:2,自引:0,他引:2  
We present a multiple-channel video transmission scheme in wireless CDMA networks over multipath fading channels. We map an embedded video bitstream, which is encoded into multiple independently decodable layers by 3D-ESCOT video coding technique, to multiple CDMA channels. One video source layer is transmitted over one CDMA channel. Each video source layer is protected by a product channel code structure. A product channel code is obtained by the combination of a row code based on rate compatible punctured convolutional code (RCPC) with cyclic redundancy check (CRC) error detection and a source-channel column code, i.e., systematic rate-compatible Reed-Solomon (RS) style erasure code. For a given budget on the available bandwidth and total transmit power, the transmitter determines the optimal power allocations and the optimal transmission rates among multiple CDMA channels, as well as the optimal product channel code rate allocation, i.e., the optimal unequal Reed-Solomon code source/parity rate allocations and the optimal RCPC rate protection for each channel. In formulating such an optimization problem, we make use of results on the large-system CDMA performance for various multiuser receivers in multipath fading channels. The channel is modeled as the concatenation of wireless BER channel and a wireline packet erasure channel with a fixed packet loss probability. By solving the optimization problem, we obtain the optimal power level allocation and the optimal transmission rate allocation over multiple CDMA channels. For each CDMA channel, we also employ a fast joint source-channel coding algorithm to obtain the optimal product channel code structure. Simulation results show that the proposed framework allows the video quality to degrade gracefully as the fading worsens or the bandwidth decreases, and it offers improved video quality at the receiver.  相似文献   

15.
Using a simulation study we analyze the throughput performance of Yao's adaptive ARQ scheme in time-varying channels. The simulation takes into account the Rayleigh amplitude and the fast or the slow fading characteristics of a wireless channel, under a representative M-FSK modulation and Reed-Solomon coding scheme. We show that, for a specific set of design parameters, Yao's adaptive procedure works well for all channel fading rates, except for moderately slow rates. By observing variations of packet error rates at a specified SNR we provide an explanation for these varied behaviors under different channel fading rates.  相似文献   

16.
Dynamic rate adaptation for uplink data transmission in a cellular multidimensional multicode (MDMC) direct-sequence code-division multiple-access packet data network is modeled and analyzed. An analytical framework is developed to evaluate the performances of radio link level dynamic rate adaptation schemes under multipath fading and log-normal shadowing. The radio link level throughput under optimal dynamic rate adaptation (having exponential computational complexity) and different heuristic-based suboptimal rate adaptation schemes can be assessed under the presented analytical framework. The performance of MDMC signaling is compared with that of the single-code variable spreading factor (VSF) signaling. To this end, based on an equilibrium point analysis of the system in steady-state, a base station-assisted and mobile-controlled dynamic rate adaptation scheme is presented.  相似文献   

17.
This paper proposes a multipath interference canceller (MPIC) associated with orthogonal code-multiplexing that achieves much higher peak throughput than 2 Mbit/s with adaptive data modulation for high-speed packet transmission in the wideband direct sequence-code division multiple access (W-CDMA) forward link, and evaluates its throughput performance by computer simulation. The simulation results elucidate that sufficient multipath interference (MPI) suppression is achieved by a four-stage MPIC with 6-12 orthogonal code-multiplexing using one iterative channel estimation with pilot and decision feedback data symbols and further that the interference rejection weight control according to the number of observed multipaths is effective in improving the throughput. It is also demonstrated that MPIC exhibits a superior MPI suppression effect to a chip equalizer in the lower received signal energy per bit-to-background noise spectrum density (Eb/N0) channel around 0-3 dB owing to the successive channel estimation at each stage. We show that the maximum peak throughput using MPIC is approximately 2.1 fold that without MPIC in a two-path and three-path Rayleigh fading channel and that the peak throughput of 8.0 Mbit/s is achieved using 64 QAM data modulation in a two-path fading channel within a 5 MHz bandwidth. Furthermore, the required average Eb/N0 for satisfying the same throughput with MPIC is decreased by more than 2.0 dB  相似文献   

18.
Multiple-input–multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) wireless systems use link adaptation to exploit the dynamic nature of wireless environments. Link adaptation maximizes throughput while maintaining target reliability by adaptively selecting the modulation order and coding rate. Link adaptation is extremely challenging, however, due to the difficulty in predicting error rates in OFDM with binary convolutional codes, bit interleaving, MIMO processing, and real channel impairments. This paper proposes a new machine-learning framework that exploits past observations of the error rate and the associated channel-state information to predict the best modulation order and coding rate for new realizations of the channel state without modeling the input–output relationship of the wireless transceiver. Our approach is enabled through our new error-rate expression that is only parameterized by postprocessing signal-to-noise ratios (SNRs), ordered over subcarriers and spatial streams. Using ordered SNRs, we propose a low-dimensional feature set that enables machine learning to increase the accuracy of link adaptation. An IEEE 802.11n simulation study validates the application of this machine-learning framework in real channels and demonstrates the improved performance of SNR ordering as it compares with competing link-quality metrics.   相似文献   

19.
MUCH WORK HAS been done in the areas of packet switching, packet radio, and random communication channels. However, efforts combining these areas are not as plentiful. There are several reasons for this. One reason is, the packet communications area is relatively young. Much of the research into packet communications has been accomplished by computer scientists rather then communications engineers, with a resulting emphasis on architecture, protocols, software, and so on. Even the development of packet radio has not fostered extensive examination of link effects on system performances. The UHF line-of-sight links and SHF satellite links have been assumed to be perfect with packet collisions as the dominant error source, which is a good assumption under normal circumstances. However, abnormal circumstances including ionospheric scintillations and multipath fading are another source of error on degraded packet radio links, which characterize Mobile Packet Radio Networks (MPRNET). In this paper we define and discuss Mobile Packet Radio Networks and presend their channel characteristics. The performance avaluation of some channel access protocols for a Mobile Packet Radio Network link, which is a typical example of a degraded packet radio channel, is descirbed.  相似文献   

20.
Using the MPEG-4 advanced audio coder (AAC) music as an example of streaming applications, we investigate the improvement of error performance for the streaming service by link adaptation and power control techniques in an enhanced general packet radio services (EGPRS) cellular network. A low packet error rate and variability are essential in providing a short error-burst length so that error concealment techniques can be effectively applied to music packets. We study the effects of a combined link adaptation and power control scheme (referred to as the error-based scheme) for achieving a target error rate and reducing error variability. By simulation, we compare the error performance of the error-based scheme at both the EGPRS block and AAC frame level with another adaptation algorithm (referred to as the throughput-based scheme) with a goal of maximizing overall network throughput. It is found that when offered with a similar traffic load, the former scheme can provide noticeable improvement of music quality over the throughput-based scheme. To achieve a similar AAC frame error rate, our results also show that the error-based scheme can increase the link throughput over the throughput-based scheme by 66.7% in one of our examples. These results reveal that by aiming at required error targets and thus reducing error variability, the error-based scheme for link adaptation and power control are helpful in improving quality and capacity for streaming applications  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号