首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sewer flooding incidents in the UK are being increasingly associated with the presence of blockages. Blockages are difficult to deal with as although there are locations where they are more likely to occur, they do occur intermittently. In order to manage sewer blockage pro-actively sewer managers need to be able to identify the location of blockages promptly. Traditional closed-circuit television (CCTV) inspection technologies are slow and relatively expensive so are not well suited to the rapid inspection of a network. This is needed if managers are to be able to address sewer blockages proactively. This paper reports on the development of an acoustic-based sensor. The sensor was tested in a full scale sewer pipe in the laboratory and it was shown that it is able to find blockages and identify structural aspects of a sewer pipe such as a manhole and lateral connection. Analysis of the received signal will locate a blockage and also provide information on its character. The measurement is very rapid and objective and so inspections can be carried out at much faster rates than using existing CCTV technologies.  相似文献   

2.
After an increase in capital investment in UK sewers to reduce hydraulic capacity problems, the proportion of sewer flooding incidents now linked to blockages has increased. It is clear that if sewer operators are to continue to reduce flooding incidents, then better blockage management is now required. Sewer blockage formation is poorly understood; blockages are intermittent and occur in a number of circumstances. This paper reports on the development of low-cost acoustic instrumentation that can identify the location of a pipe blockage and then estimate the local head loss as a result of the presence of a blockage. A set of experiments were carried out in two full-scale laboratory pipes. The pipes' condition was altered by inserting blockages of different sizes. Acoustic data were recorded and presented in terms of the acoustic energy reflected from the partially blocked pipe. The results of this study show that the total reflected acoustic energy correlates with the measured head loss. A new empirical relation between the reflected acoustic energy and head loss due to a blockage is derived. This knowledge can then be used to estimate the reduction in flow capacity resulting from a blockage based on a single remote measurement.  相似文献   

3.
Blockages in piping systems are formed from potentially complex combinations of bio-film build up, corrosion by-products, and sediment deposition. Transient-based methods seek to detect blockages by analyzing the evolution of small amplitude pressure waves. In theory, such methods can be efficient, nearly non-intrusive and economical but, thus far, studies have only considered symmetrical blockages, uniform in both the radial and longitudinal directions. Laboratory experiments are described here that involve pipe blockages with various levels of irregularity and severity; the way the transient response is affected by a non-uniform blockage is investigated. The differences between uniform and non-uniform blockages are quantified in terms of the rate that wave envelopes attenuate and the degree that phases are shifted. Two different methods for modeling these impacts are compared, namely through an increase in pipe roughness and through a wave scattering model. Wave scattering is shown to play a dominant role in explaining both wave envelope attenuation and phase shift. The accuracy of existing transient-based methods of blockage detection in the frequency domain is also examined, and is found that the predictions of rough blockage locations and sizes by current method are in good agreement with data, with relatively larger discrepancies for rough blockage lengths.  相似文献   

4.
This paper reports on the development of a low-cost, rapidly deployable sensor for surveying live sewers for blockages and structural failures. The anticipated cost is an order of magnitude lower than current techniques. The technology is based on acoustic normal model decomposition, The instrument emits short coded acoustic signals which are reflected from any sewer wall defect. The acoustic signals can be short Gaussian pulses or longer sinusoidal sweeps and pseudo-random noise. The processing algorithms used on the reflected signal can predict the extent and geometry of the pipe deformation, and the locations and approximate size of common blockages. The effect of the water level on the frequency of the fundamental mode has also been investigated. It is shown that the technique can be adapted to work reliably in relatively large 600 mm diameter sewer pipes.  相似文献   

5.
流速仪检测设备控制系统是利用变频调速、数字编码等技术,检测数据自动采集、计算、存贮和全自动控制一体化系统。介绍了在水文仪器检测控制设备应用工控机和PLC技术的一些体会,并对流速仪信号采集的问题作了说明。该系统的应用可在有限的检测距离内,实现检测车在0.01~6.00m/s速度范围内连续可调,并且运行稳定,为保证流速仪器的检测质量和提高效率提供一个完善的方案,是流速仪检测设备利用新技术、新设备控制的新一代作业平台。  相似文献   

6.
The artificial ecological floating bed is a commonly adopted in situ treatment technique for repairing and purifying polluted water. The plant root system of the floating bed is the primary region to absorb and degrade the pollutant of water. Its inner flow field characteristics and the interactive water quantity with the surrounding water greatly impact the purification efficiency of the floating bed. In this paper, the particle image velocimetry(PIV) technology and the boundary velocity direct extraction method are used to study the velocity distribution of the root system region by numerical simulations and experiments in an experimental water channel. A pollution removal rate(PRR) evaluation model is built to calculate the PRR by coupling with the flow velocity field of the root system region. The variations of the total pollutant removal rate(TPRR) are discussed for different center distances( L= 0.30 m, 0.45 m, 0.60 m), flow velocities( v= 0.007 m/s, 0.015 m/s, 0.025 m/s, 0.040 m/s, 0.055 m/s, 0.070 m/s) and root system porosities( P= 54.73%, 68.33%, 79.17%). The results indicate that the position arrangement of the floating beds influences the TPRR significantly, and the distance should be limited in a reasonable range for a high purification efficiency. Moreover, the root systems with higher porosity( P= 68.33%, 79.17%) have higher TPRR value than a lower porosity root system(P= 54.73%) within a certain flow velocity range, and the higher porosity root system has less fluctuation of the TPRR value than a lower porosity situation within a wide flow velocity range. Furthermore, under the same center distance condition, the lower flow velocity condition brings about a significantly higher TPRR value than the higher flow velocity situation.  相似文献   

7.
The removal of sewer solids at combined sewer overflow locations depends on the flow patterns inside the overflow structure on the one hand and on the sediment characteristics on the other hand. Flow conditions can be described by the residence time distribution; sewer sediments can be characterised by their settling velocity distribution. The combination of both distributions leads to a dimensionless efficiency curve, which gives the removal efficiency as a function of the Hazen number. For field conditions this efficiency curve is mainly influenced by the settling velocity distribution of the sewer sediments and, as a consequence, nearly identical efficiency curves are found for different types of prototype CSO structure. For design purposes, a methodology using return frequency analysis is proposed.  相似文献   

8.
An inclined plate membrane bioreactor (iPMBR) was introduced to meet the challenge of handling high mixed liquor suspended solids when operating at long sludge retention times. During the first 407 days of operation, the iPMBR was able to rezone more sludge (1.5-10.5 times greater) in its upstream, anoxic tank compared to its downstream, aerobic tank. This could extend membrane filtration by diverting most of the sludge from the aerobic zone. During this period, the upflow velocities through the inclined plates of the anoxic tank ranged from 2.3 x 10(-4) to 7.7 x 10(-4) m/s. After Day 407, the operating conditions were changed to determine whether the iPMBR would fail to create a sludge concentration difference between its two tanks. When the upflow velocity was increased to 1.8 x 10(-3) m/s, the sludge concentration difference between the two zones was removed. This indicated that the upflow velocity had increased sufficiently to overcome the settling velocities of most flocs, resulting in more solids being carried from the anoxic to the aerobic tank. For the configuration of this iPMBR, operating at flow rates where the upflow velocity through the inclined plates was less than 1.0 x 10(-3) m/s would be necessary to keep a significant sludge concentration difference between its two zones.  相似文献   

9.
Increasing concern over the discharge of sewer solids from combined sewer overflows (CSOs) has encouraged the introduction of installations which incorporate either mesh or bar screen arrangements, or both. Gross solids create visual and aesthetic pollution if they reach watercourses. An entirely new arrangement for a CSO with a perforated screen of 6 mm diameter apertures is described in the paper. The arrangement is circular, with tangential flow across the screen to facilitate its cleaning. High velocities across the screen holes ensure that solids which have been prevented from discharging are swept clear from the screen. As a result, a sufficient screen area remains free from trapped solids to permit discharge of flow. The device has been designed to meet all anticipated performance criteria for the removal of solids, and to require a minimum of maintenance.A thorough testing programme in different conditions is described. Laboratory testing utilised a wide range of gross solids and flows to determine efficiencies of solids removal under all anticipated operating conditions. The performance of the CSO in a sewer environment was evaluated at a sewage treatment works with flows up to 1801/s using both raw and treated sewage to simulate storm sewage of different strengths. Both the device and its testing are described, together with the results of the testing programme.  相似文献   

10.
Based on novel technologies, a modular online monitoring station suitable for continuous application in sewer networks, wastewater treatment plants and receiving water bodies has been designed. The monitoring station serves as the backbone of a water quality pilot network. As one part of this network a sewer monitoring station has been installed at a combined sewer overflow in Graz to quantify pollution concentrations and loads in the combined sewer and into the receiving water and is operated since October 2002. The design and equipment of the measurement station and first operating experiences and results are given in this paper.  相似文献   

11.
Periodical cleansing operations prove necessary inside sewer systems in order to reduce hydraulic and environmental problems owing to the accumulation of deposits on the bottom of channels. For this objective, new effective hydraulic devices based on the scouring effects of flushing waves have been recently set up and adopted in many sewer systems. In this paper, the results of an experimental and numerical investigation on the hydraulic operation of the Hydrass flushing gate are reported. The experimental analysis has been carried out using a laboratory channel and a reduced scale model of the gate, in order to characterise the flushing waves generated by the device. The numerical analysis has been performed using a mathematical model specifically developed for the simulation of flushing waves inside sewer channels. The comparison of numerical results and experimental data has allowed evaluation of the applicability under unsteady flow conditions of the outflow relations determined for the Hydrass gate in a previous investigation under steady flow conditions.  相似文献   

12.
This study is about the particle retention and filtration characteristics of fibre filter. Four laboratory scale fibre filters with different heights were used in parallel at various packing densities and filtration velocities. Of all of the operating parameters studied, filtration velocity had the most influence. Contrary to general theories, pressure drop increases slightly during the filtration in spite of the continuous retention of particles. This may have occurred because of large porosity of the packing (about 93%). This might be considered an advantage of the filter and something that makes it economic. The higher the filtration velocity, the larger the mass of particles retained in the filter. For filtration velocities of 20 and 40 m/h, particles smaller than 5 microm are retained as proven by the particle size distribution at the inlet and outlet.  相似文献   

13.
The impact pressure from waves is an important issue to be considered in the design of coastal structures. In this paper, the waves acting on the deck of a shore-connecting jetty on a slope exposed to oblique waves and in the presence of current are examined based on laboratory experiments. The impact pressures are measured on a 1:50 scale model of a jetty head with down-standing beams and berthing members. The relations of the impact pressure with the incident wave angle and the current velocity are examined. It is shown that the impact pressure is sensitive to the wave angle and the current velocity. A computational model for the impact load on the deck of shore-connecting jetties exposed to oblique waves and current is developed.  相似文献   

14.
In this study, three asset management strategies were compared with respect to their efficiency to reduce flood risk. Data from call centres at two municipalities were used to quantify urban flood risks associated with three causes of urban flooding: gully pot blockage, sewer pipe blockage and sewer overloading. The efficiency of three flood reduction strategies was assessed based on their effect on the causes contributing to flood risk. The sensitivity of the results to uncertainty in the data source, citizens' calls, was analysed through incorporation of uncertainty ranges taken from customer complaint literature. Based on the available data it could be shown that increasing gully pot blockage is the most efficient action to reduce flood risk, given data uncertainty. If differences between cause incidences are large, as in the presented case study, call data are sufficient to decide how flood risk can be most efficiently reduced. According to the results of this analysis, enlargement of sewer pipes is not an efficient strategy to reduce flood risk, because flood risk associated with sewer overloading is small compared to other failure mechanisms.  相似文献   

15.
In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m(3)/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m(3)/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m(3)/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs: either using simultaneous nitrification/denitrification in all filters with recirculation introducing bottom aeration with full nitrification in some filters for storm treatment and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m(3) per 24 h in dry weather, is redirected to the AS plant. Primary settler sludge and the combined biosolids from the AS plant are anaerobically digested, with methane gas being used for generation of heat and power. On-line measurements for the parameters NO3, NO2, NH4, temperature as well as dissolved oxygen (DO) are used for control of aeration and external carbon source (methanol). Dosing of flocculants for P-removal is carried out based on laboratory analysis and jar tests. This paper discusses the experience gained from the plant operation during the last ten years, compiling comparative performance and cost data of the two processes, as well as their optimisation.  相似文献   

16.
简要介绍了440t锅炉系统及对流过热器结构,对对流过热器管失效管样进行了测量分析,认为引起对流过热器管爆漏的主要原因是停炉启动后管内被带入大量氧化皮及以前检修过程中遗留的金属物在管内形成堵塞,从而发生短期过热爆管,最后提出了具体的预防爆管的建议。  相似文献   

17.
Prolonged drought which has occurred everywhere around the world has caused water shortages, leading many countries to consider more sustainable practices, which are called source management practices (SMPs) to ensure water availability for the future. SMPs include the practices of water use reduction, potable water substitution and wastewater volume reduction such as water demand management, rainwater harvesting, greywater recycling and sewer mining. Besides the well known advantages from SMPs, they also contribute to the alteration of wastewater characteristics which finally affect the process in downstream infrastructure such as sewerage networks. Several studies have shown that the implementation of SMPs decreases the wastewater flow, whilst increasing its strength. High-strength wastewater can cause sewer problems such as sewer blockage, odour and corrosion. Yet, not all SMPs and their impact on existing sewer networks have been investigated. Therefore, this study reviews some examples of four common SMPs, the wastewater characteristics and the physical and biochemical transformation processes in sewers and the problems that might caused by them, and finally the potential impacts of those SMPs on wastewater characteristics and sewer networks are discussed. This paper provides sewer system managers with an overview of potential impacts on the sewer network due to the implementation of some SMPs. Potential research opportunities for the impact of SMPs on existing sewers are also identified.  相似文献   

18.
A protocol to select nutrient removal technologies that can achieve low nutrient effluents (total nitrogen (TN) < 5 mg/L and total phosphorus (TP) < 0.5 mg/L) was developed for different wastewater treatment plant (WWTP) sizes based on the research conducted during a Water Environment Research Foundation funded project. The adaptable protocol includes technology and cost assessment of feasible (pre-screened) nutrient removal technologies that are being successfully implemented at full scale. The information collected from the full scale nutrient removal plants to develop this protocol includes design, operational, performance, and cost data through a direct survey of plants, and published data. The protocol includes a "technology threshold" approach consisting of Tier I (TN < 5.0 mg/L; TP < 0.5 mg/L) and Tier II (TN < 3.0 mg/L; TP < 0.1 mg/L) effluent nutrient levels for different plant sizes. A very large WWTP (1,250,000 m(3)/day flow) in Chicago, Illinois, USA adapted this protocol for master planning and design of future nutrient removal facilities based on plant and site specific criteria.  相似文献   

19.
In this study, treatment of slaughterhouse wastewater by electrocoagulation was investigated in batch system using Fe electrodes. The effect of various variables such as electrode number, current density and operating time was tested. Pollutant removal efficiency increased with increasing electrode number and operating time. The biochemical oxygen demand (BOD(5))(,) chemical oxygen demand (COD), total suspended solid (TSS), and total nitrogen (TN) removal efficiencies using eight electrodes at a contact time of 50 min and a current density of 10 A/m(2) were 66, 62, 60, and 56%, respectively. Higher electrode numbers will allow shorter operating times to achieve certain removal efficiencies. Also, removal efficiencies increased by increasing the current density; the highest removal efficiencies of BOD(5,) COD, TSS, and TN at a contact time of 50 min and a current density of 25 A/m(2) were 97, 93, 81, and 84%, respectively. The results also show that the reactor pH varies directly with the current density; at 25 A/m(2), the reactor pH increased from an initial value of 7.1 to 7.7 after 50 min. The experimental results showed that the kinetics of BOD(5), COD, TSS and TN removal could be fitted adequately using a first order kinetic model (higher R(2)).  相似文献   

20.
Removal of cyanide from acrylonitrile wastewater using gas membrane   总被引:3,自引:0,他引:3  
Wu J  Wang J  Liu H  He S  Huang X 《Water science and technology》2011,64(11):2274-2281
Acrylonitrile wastewater is one of the most refractory industrial wastewaters as it contains cyanide at a high concentration. This study introduced a safe, effective and economic strategy, that is, use of the gas membrane to acrylonitrile wastewater treatment. Due to the complicated constituents of acrylonitrile wastewater, cyanide removal rate by gas membrane is very low. In order to enhance HCN removal, the operational conditions were optimized; pre-treatment strategies for fouling mitigation were also proposed and tested for acrylonitrile wastewater. The optimal operational parameters were achieved at an acidified pH of 5.0, wastewater velocity of 0.14 m s(-1), NaOH concentration of 10% and a temperature of 40 °C. The major factor affecting HCN removal was the pH of the acidified wastewater. The reason for the low removal rate was further explored and found to be the decrease of HCN transfer coefficient, which was caused by membrane fouling. Furthermore, the predominant foulants have been identified as colloidal organic materials and inorganic salts. Alkalization, which is effective in reducing these materials, has been proven to be most effective in mitigating membrane fouling and improving HCN removal, which was also confirmed by a pilot-scale study. The overall removal rate was therefore significantly enhanced to 87.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号