首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conventional high-frequency phase-shifted zero-voltage-switching (ZVS) full-bridge DC/DC converter has a disadvantage, in that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current, RMS current stress, conduction losses of the transformer and switching devices are increased. To alleviate this problem, this paper proposes an improved zero-voltage zero-current switching (ZVZCS) phase-shifted full-bridge (FB) DC/DC converter with a modified energy-recovery snubber (ERS) attached at the secondary side of transformer. Also, the small signal model of the proposed ZVZCS FB DC/DC converter is derived by incorporating the effects introduced by a transformer leakage inductance and an ERS to achieve ZVZCS. Both analysis and experiment are performed to verify the proposed topology by implementing a 7-kW (120 VDC, 58 A) 30-kHz insulated-gate-bipolar-transistor-based experimental circuit.  相似文献   

2.
《信息技术》2017,(7):167-174
为了减小Boost软开关变换器高频工作状态下开关管的功率损耗,文中提出了一种改进调制策略,传统调制策略下主开关管只能实现零电流开通,通过改变主开关管的开通时刻和辅助开关管的关断时刻可实现主开关管零电压零电流开通,辅助开关管可提前实现零电压零电流关断,提高了电路工作效率。仿真波形中观察到改进调制策略下主开关管实现了零电压零电流开通,辅助开关管提前实现了零电压零电流关断。  相似文献   

3.
Hamada  S. Moisseev  S. Nakaoka  M. 《Electronics letters》2000,36(25):2055-2056
A novel prototype is presented of a two-switch forward soft-switching PWM DC-DC power converter with reduced switching and conduction power losses, which can operate under two soft commutations of zero voltage and zero current of full bridge circuit topology  相似文献   

4.
This paper presents a forward converter with a nondissipative cell which provides a soft switching converter operation. This approach is based on the principle of self-resonance, that is: an auxiliary voltage source feeds the resonant circuit, charging a capacitor which provides the condition for zero voltage switching (ZVS) turn on and turn off of the switches. The complete operating principle, relevant equations, simulation, and experimental results are presented  相似文献   

5.
针对太阳能光伏及燃料电池等领域电源需要较宽输入电压范围的需求,提出一种通用的具有较宽输入电压范围的软开关电流型DC/DC转换器。该转换器采用了固定频率混合调制设计,可以在所有工作条件下实现半导体器件的软开关工作,并采用电流馈电技术以便适用于低电压高电流的电源。相较于传统转换器,该转换器更为通用,能够实现零电压开关和零电流开关,并且能够在输入电压和负载变化出现较大变化时控制输出电压。实验结果显示,在20-60V输入电压范围内且负载出现变化时,该转换器均表现出良好的性能。  相似文献   

6.
概述 近年来,随着一些高性能CPU的出现,如Pentium 4、Athlon等,需要输出电压更小,更大电流的DC/DC变换器,对热性能、EMI及负载瞬变应答(Load Transient)的要求也不断提高。传统的单相DC/DC变换器日益显示出局限性。多相DC/DC变换器以其独特的性能,为高性能CPU电源的解决方案开辟的一条新路。  相似文献   

7.
Soft-switched DC/DC converter with PWM control   总被引:3,自引:0,他引:3  
In this paper, a new power converter with two variations is proposed. A novel asymmetrical pulse-width-modulation (PWM) control scheme is used to control the power converter under constant switching frequency operation. The modes of operation for both variations are discussed. The DC characteristics, which can be used in the design of the power converters, are also presented. Two 50 W power converters were built to verify the characteristics of the converters. Due to the zero-voltage-switching (ZVS) operation of the switches and low device voltage and current stresses, these power converters have high full- and partial-load efficiencies. They are, therefore, potential candidates for high-efficiency high-density power supply applications  相似文献   

8.
A steady-state analysis and experimental results for a dual sepic pulse-width-modulated (PWM) DC/DC power converter for both continuous and discontinuous modes of operation are presented. The converter is dual to a sepic converter, but it can also be derived from a forward converter by replacing one of its rectifier diodes with a coupling capacitor. The circuit acts as a step-down or step-up converter, depending on the value of the ON switch duty cycle. The transformerless version of the converter has a positive DC/DC voltage transfer function. Therefore, the circuit is suitable for distributed power systems. Design equations for all circuit components are derived. Experimental results measured at 100 kHz were in good agreement with theoretical predictions  相似文献   

9.
本文实现了一种数字控制PWM/PSM双模DC/DC Buck变换器。该变换器的两种工作模式可根据连续导通模式(CCM)或者断续导通模式(DCM)自动选择。变换器在DCM模式下工作于脉冲跨周期调制(PSM)模式,在CCM模式下工作于2MHz开关频率的脉冲调宽调制(PWM)模式。轻负载下通过跳周期工作降低了开关损耗。因此在宽负载范围内得到了较高的变换效率。文中详细阐述了PWM控制电路模块,例如模拟数字转换器(ADC),数字PWM(DPWM)和环路补偿器,以及PSM控制模块的实现。环路补偿器的参数可编程调节,以满足不同的外围器件参数以及开关频率。这一特性比模拟方式具有更大的灵活性。本文中实现的变换器采用0.13μm CMOS工艺设计并流片,芯片面积为1.21 mm2。测试结果显示变换效率在200mA负载时为90%,在20mA负载时为67%。同时,负载阶跃响应的测试结果说明了本文实现的双模变换器的良好稳定性。  相似文献   

10.
A digitally controlled pulse width modulation/pulse skip modulation(PWM/PSM) dual-mode buck DC/DC converter is proposed.Its operation mode can be automatically chosen as continuous conduction mode (CCM) or discontinuous conduction mode(DCM).The converter works in PSM at DCM and in 2 MHz PWM at CCM.Switching loss is reduced at a light load by skipping cycles.Thus high conversion efficiency is realized in a wide load current.The implementations of PWM control blocks,such as the ADC,the digital pulse width modulator(DPWM) and the loop compensator,and PSM control blocks are described in detail.The parameters of the loop compensator can be programmed for different external component values and switching frequencies, which is much more flexible than its analog rivals.The chip is manufactured in 0.13μm CMOS technology and the chip area is 1.21 mm~2.Experimental results show that the conversion efficiency is high,being 90%at 200 mA and 67%at 20 mA.Meanwhile,the measured load step response shows that the proposed dual-mode converter has good stability.  相似文献   

11.
Modeling PWM DC/DC converters out of basic converter units   总被引:4,自引:0,他引:4  
An alternative approach to modeling pulsewidth-modulated (PWM) DC/DC converters out of basic converter units (BCUs) is presented in this paper. Typical PWM DC/DC converters include the well-known buck, boost, buck-boost, Cuk, Zeta, and Sepic. With proper reconfiguration, these converters can be represented in terms of either buck or boost converter and linear devices, thus, the buck and boost converters are named BCUs. The PWM converters are, consequently, categorized into buck and boost families. With this categorization, the small-signal models of these converters are readily derived in terms of h parameter (for buck family) and g parameter (for boost family). Using the proposed approach, not only can one find a general configuration for converters in a family, but one can yield the same small-signal models as those derived from the direct state-space averaging method. Additionally, modeling of quasi-resonant converters and multiresonant converters can be simplified when adopting the proposed approach  相似文献   

12.
High-switching frequency associated with soft commutation techniques is a trend in switching converters. Following this trend, a buck pulsewidth modulation (PWM) converter is presented. The DC voltage conversion ratio of this converter has a quadratic dependence on duty cycle, providing a large stepdown. This new buck quadratic PWM soft-single-switched converter, having only a single active switch, provides a high efficient operating condition for a wide load range at high-switching frequency. In order to illustrate the operating principle of this new converter, a detailed study including theoretical analysis, relevant equations and simulation, and experimental results is carried out  相似文献   

13.
The saturable inductor is employed in the full-bridge (FB) zero voltage switched (ZVS) pulse width modulated (PWM) power converter to improve its performance. The current and voltage stresses of the switches as well as parasitic oscillations are significantly reduced compared to those of the conventional FB-ZVS-PWM power converter. The qualitative analysis is presented and is verified on a 500 kHz, 5 V/40 A converter  相似文献   

14.
An approach to the correction of the resonant commutation time of a three-phase current-fed zero current soft-switching pulsewidth modulation converter is described, and the converter characteristics are discussed  相似文献   

15.
A new three-phase current-fed soft-switching PWM converter is presented. This converter utilises two types of switching commutation scheme to improve the PWM current utilisation rate. It is shown by means of computer simulation that this converter has low THD and offers unity power factor correction  相似文献   

16.
This paper proposes the application of the asymmetrical duty cycle to the three-phase dc/dc pulse-width modulation isolated converter. Thus, soft commutation is achieved for a wide load range using the leakage inductance of the transformer and the intrinsic capacitance of the switches, as no additional semiconductor devices are needed. The resulting topology is characterized by an increase in the input current and output current frequency, by a factor of three compared to the full-bridge converter, which reduces the filters size. In addition, the rms current through the power components is lower, implying the improved thermal distribution of the losses. Besides, the three-phase transformer allows the reduction of the core size. In this paper, a mathematical analysis, the main waveforms, a design procedure, as well as simulation and experimental results obtained in a prototype of 6 kW are presented.  相似文献   

17.
This paper presents an improved regenerative soft turn-on and turn-off snubber applied to a boost pulsewidth-modulated (PWM) converter. The boost soft-single-switched converter proposed, which has only a single active switch, is able to operate with soft switching in a PWM way without high voltage and current stresses. This is achieved by using an auxiliary inductor, which is magnetically coupled with the main inductor of the converter. In order to illustrate the operating principle of this new converter, a detailed study, including simulations as well as experimental results, is carried out. The validity of this new converter is guaranteed by the obtained results  相似文献   

18.
A passive soft-switching snubber for PWM inverters   总被引:3,自引:0,他引:3  
This paper presents a regenerative passive snubber circuit for pulse-width modulation (PWM) inverters to achieve soft-switching purposes without significant cost and reliability penalties. This passive soft-switching snubber (PSSS) employs a diode/capacitor snubber circuit for each switching device in an inverter to provide low dv/dt and low switching losses to the device. The PSSS further uses a transformer-based energy regenerative circuit to recover the energy captured in the snubber capacitors. All components in the PSSS circuit are passive, thus leading to reliable and low-cost advantages over those soft-switching schemes relying on additional active switches. The snubber has been incorporated into a 150 kVA PWM inverter. Simulation and experimental results are given to demonstrate the validity and features of the snubber circuit.  相似文献   

19.
This paper presents a new parallel three-level soft switching pulse-width modulation (PWM) converter. The proposed converter has two circuit cells operated by the interleaved PWM modulation. Thus, the ripple currents at input and output sides are reduced. Each circuit cell has two three-level zero voltage switching circuits sharing the same power switches. Therefore, the current and power rating of the secondary side components are reduced. Current double rectifier topology is selected on the secondary side to decrease output ripple current. The main advantages of the proposed converter are soft switching of power switches, low ripple current on the output side and low-voltage rating of power switches for medium-power applications. Finally, the performance of the proposed converter is verified by experiments with 1 kW prototype circuit.  相似文献   

20.
《Microelectronics Journal》2007,38(8-9):923-930
A monolithic CMOS voltage-mode, buck DC–DC converter with integrated power switches and new on-chip pulse-width modulation (PWM) technique of switching control is presented in this paper. The PWM scheme is constructed by a CMOS ring oscillator, which duty is compensated by a pseudo hyperbola curve current generator to achieve almost constant frequency operation. The minimum operating voltage of this voltage-mode buck DC–DC converter is 1.2 V. The proposed buck DC–DC converter with a chip area of 0.82 mm2 is fabricated with a standard 0.35-μm CMOS process. The experimental results show that the converter is well regulated over an output range from 0.3 to 1.2 V, with an input voltage of 1.5 V. The maximum efficiency of the converter is 88%, and its efficiency is kept above 80% over an output power ranging from 30 to 300 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号