首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection   总被引:3,自引:0,他引:3  
We introduce a novel soft antenna selection approach for multiple antenna systems through a joint design of both RF (radio frequency) and baseband signal processing. When only a limited number of frequency converters are available, conventional antenna selection schemes show severe performance degradation in most fading channels. To alleviate those degradations, we propose to adopt a transformation of the signals in the RF domain that requires only simple, variable phase shifters and combiners to reduce the number of RF chains. The constrained optimum design of these shifters, adapting to the channel state, is given in analytical form, which requires no search or iterations. The resulting system shows a significant performance advantage for both correlated and uncorrelated channels. The technique works for both transmitter and receiver design, which leads to the joint transceiver antenna selection. When only a single information stream is transmitted through the channel, the new design can achieve the same SNR gain as the full-complexity system while requiring, at most, two RF chains. With multiple information streams transmitted, it is demonstrated by computer experiments that the capacity performance is close to optimum.  相似文献   

2.
Orthogonal Frequency Division Multiplexing (OFDM) systems are commonly used to mitigate frequency-selective multipath fading and provide high-speed data transmission. In this paper, we derive new union bounds on the error probability of a coded OFDM system in wireless environments. In particular, we consider convolutionally coded OFDM systems employing single and multiple transmit antennas over correlated block fading (CBF) channels with perfect channel state information (CSI). Results show that the new union bound is tight to simulation results. In addition, the bound accurately captures the effect of the correlation between sub-carriers channels. It is shown that as the channel becomes more frequency-selective, the performance get better due to the increased frequency diversity. Moreover, the bound also captures the effect of multi-antenna as space diversity. The proposed bounds can be applied for coded OFDM systems employing different coding schemes over different channel models.  相似文献   

3.
Transmit antenna selection in spatially multiplexed multiple-input multiple-output (MIMO) systems is a low complexity low-rate feedback technique, which involves transmission of a reduced number of streams from the maximum possible to improve the error rate performance of linear receivers. It has been shown to be effective in enhancing the performance of single-user interference-free point-to-point MIMO systems. However, performance of transmit antenna selection techniques in interference-limited environments and over frequency selective channels is less well understood. In this paper, we investigate the performance of transmit antenna selection in spatially multiplexed MIMO systems in the presence of co-channel interference. We propose a transmission technique for the downlink of a cellular MIMO system that employs transmit antenna selection to minimize the effect of co-channel interference from surrounding cells. Several transmit antenna selection algorithms are proposed and their performance is evaluated in both frequency flat and frequency selective channels. Various antenna selection algorithms proposed in the literature for single user MIMO links are extended to a cellular scenario, where each user experiences co-channel interference from the other cells (intercell interference) in the system. For frequency selective channels, we consider orthogonal frequency division multiplexing (OFDM) with MIMO. We propose a selection algorithm that maximizes the average output SINR over all subcarriers. A method to quantify selection gain in frequency selective channel is discussed. The effect of delay spread on the selection gain is studied by simulating practical fading environments with different delay spreads. The effect of the variable signal constellation sizes and the number of transmitted streams on the bit error rate (BER) performance of the proposed system is also investigated in conjunction with the transmit antenna selection. Simulation results show that for low to moderate interference power, significant improvement in the system performance is achievable with the use of transmit antenna selection algorithms. Even though the gain due to selection in frequency selective channels is reduced compared to that in flat fading channels due to the inherent frequency diversity, the performance improvement is significant when the system is interference limited. The performance improvement due to reduced number of transmit streams at larger signal constellation sizes is found to be more significant in spatially correlated scenarios, and the gain due to selection is found to be reduced with the increased delay spread. It is found that employing transmit antenna selection algorithms in conjunction with adaptation of the number of transmitted streams and the signal constellation sizes can significantly improve the performance of MIMO systems with co-channel interference.  相似文献   

4.
We compare two block transmission systems over frequency-selective fading channels: orthogonal frequency-division multiplexing (OFDM) versus single-carrier modulated blocks with zero padding (ZP). We first compare their peak-to-average power ratio (PAR) and the corresponding power amplifier backoff for phase-shift keying or quadrature amplitude modulation. Then, we study the effects of carrier frequency offset on their performance and throughput. We further compare the performance and complexity of uncoded and coded transmissions over random dispersive channels, including Rayleigh fading channels, as well as practical HIPERLAN/2 indoor and outdoor channels. We establish that unlike OFDM, uncoded block transmissions with ZP enjoy maximum diversity and coding gains within the class of linearly precoded block transmissions. Analysis and computer simulations confirm the considerable edge of ZP-only in terms of PAR, robustness to carrier frequency offset, and uncoded performance, at the price of slightly increased complexity. In the coded case, ZP is preferable when the code rate is high (e.g., 3/4), while coded OFDM is to be preferred in terms of both performance and complexity when the code rate is low (e.g., 1/2) and the error-correcting capability is enhanced. As ZP block transmissions can approximate serial single-carrier systems as well, the scope of the present comparison is broader.  相似文献   

5.
Performance analysis of adaptive interleaving for OFDM systems   总被引:7,自引:0,他引:7  
We proposed a novel interleaving technique for orthogonal frequency division multiplexing (OFDM), namely adaptive interleaving, which can break the bursty channel errors more effectively than traditional block interleaving. The technique rearranges the symbols according to instantaneous channel state information of the OFDM subcarriers so as to reduce or minimize the bit error rate (BER) of each OFDM frame. It is well suited to OFDM systems because the channel state information (CSI) values of the whole frame could be estimated at once when transmitted symbols are framed in the frequency dimension. Extensive simulations show that the proposed scheme can greatly improve the performance of the coded modulation systems utilizing block interleaving. Furthermore, we show that the adaptive interleaving out performs any other static interleaving schemes, even in the fast fading channel (with independent fading between symbols). We derived a semi-analytical bound for the BER of the adaptive interleaving scheme under correlated Rayleigh fading channels. Furthermore, we discussed the transmitter-receiver (interleaving pattern) synchronization problem  相似文献   

6.
Coding approaches for multiple antenna transmission in fast fading and OFDM   总被引:1,自引:0,他引:1  
Multiple-antenna channel coding for orthogonal frequency-division multiplexing (OFDM) transmission over dispersive channels is reconsidered because with frequency interleaving, the effective channel characteristic across subcarriers is rather fast fading. The channel does not comply with the quasistatic model widely assumed for space-time trellis codes (STCs). For that reason, we first study the ideal fast-fading multiple transmit and receive antenna channel and then compare the performance of STCs with that of bit-interleaved coded modulation in fast fading. Mutual information of the ergodic channel is evaluated for numerous modulation scenarios, and capacity comparisons generate guidelines on how to jointly adjust coding rate and modulation cardinality. Bit-based coding offers large flexibility in rate adaptation, and simulation results show that it outperforms STCs in ideal fast fading and, finally, in a realistic OFDM application as well.  相似文献   

7.
FFT-based coded orthogonal frequency division multiplexing (COFDM) is one of the techniques for digital TV broadcasting over multipath fading channels. A FFT-based OFDM signal is subject to various hardware nonlinearities in both the transmitter and receiver. Hardware nonlinearities not only affect the in-band performance of an FFT-based OFDM system but also may affect the system performance of an adjacent channel signal because of regenerated sidelobes of the transmitted signal. The paper investigates the in-band and out-of-band behaviour of a 64QAM-OFDM system under various nonlinear devices. It is shown that the inherent signal clipping in the IFFT processors with a limited word length reduces the required RF amplifier output backoff (OBO) where adjacent channel interference is the limiting factor. For a 0.25% clipping rate, an additional 2 dB OBO is required for the COFDM signal to achieve the same level of adjacent channel interference as for the single carrier system. The loss in SNR due to signal clipping is negligible in a coded OFDM system  相似文献   

8.
A Plotkin-based polar-coded orthogonal frequency division multiplexing (P-PC-OFDM) scheme is proposed and its bit error rate (BER) performance over additive white gaussian noise (AWGN), frequency selective Rayleigh, Rician and Nakagami-m fading channels has been evaluated. The considered Plotkin’s construction possesses a parallel split in its structure, which motivated us to extend the proposed P-PC-OFDM scheme in a coded cooperative scenario. As the relay’s effective collaboration has always been pivotal in the design of cooperative communication therefore, an efficient selection criterion for choosing the information bits has been inculcated at the relay node. To assess the BER performance of the proposed cooperative scheme, we have also upgraded conventional polar-coded cooperative scheme in the context of OFDM as an appropriate bench marker. The Monte Carlo simulated results revealed that the proposed Plotkin-based polar-coded cooperative OFDM scheme convincingly outperforms the conventional polar-coded cooperative OFDM scheme by 0.5 ~ 0.6 dBs over AWGN channel. This prominent gain in BER performance is made possible due to the bit-selection criteria and the joint successive cancellation decoding adopted at the relay and the destination nodes, respectively. Furthermore, the proposed coded cooperative schemes outperform their corresponding non-cooperative schemes by a gain of 1 dB under an identical condition.  相似文献   

9.
Recently, unitary matrix modulation (UMM) has been investigated in multiple antenna systems which is called unitary space‐time modulation (USTM). In an OFDM, different channel delay profiles and path strengths bring different frequency selective patterns. Therefore, OFDM system can potentially provide a diversity at the frequency selective fading due to the different channel delay profiles. When we consider only the diagonal components of UMM with splitting over the coherence bandwidth, the system can obtain a frequency diversity in a single antenna, since the channel response of the diagonal components of UMM that split over the coherence bandwidth shows to be totally different. In this paper, we propose the diagonal components of UMM/OFDM with splitting over the coherence bandwidth (UMM‐S/OFDM) in a single antenna. The proposed system can obtain the frequency diversity with splitting the diagonal components of UMM/OFDM over the coherence bandwidth. Therefore, the proposed system with a single antenna can obtain good BER performance like the USTM/OFDM with two antennas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The performance of OFDM/FM modulation for digital communication over Rayleigh-fading mobile radio channels is described. The use of orthogonal frequency division multiplexing (OFDM) over mobile radio channels was proposed by Cimini (1985). OFDM transmits blocks of bits in parallel and reduces the bit error rate (BER) by averaging the effects of fading over the bits in the block. OFDM/FM is a modulation technique in which the OFDM baseband signal is used to modulate an FM transmitter. OFDM/FM can be implemented simply and inexpensively by retrofitting existing FM communication systems. Expressions are derived for the BER and word error rate (WER) within a block when each subchannel is QAM-modulated. Several numerical methods are developed to evaluate the overall BER and WER. An experimental OFDM/FM system was implemented and tested using unmodified VHF FM radio equipment and a fading channel simulator. The BER and WER results obtained from the hardware measurements agree closely with the numerical results  相似文献   

11.
Differential unitary space‐time modulation (DUSTM) has emerged as a promising technique to obtain spatial diversity without intractable channel estimation. This paper presents a study of the application of DUSTM on multiple‐input multiple‐output orthogonal frequency division multiplexing (MIMO‐OFDM) systems with frequency‐selective fading channels. From the view of a correlation analysis between subcarriers of OFDM, we obtain the maximum achievable diversity of DUSTM on MIMO‐OFDM systems. Moreover, an efficient implementation strategy based on subcarrier reconstruction is proposed, which transmits all the signals of one signal matrix in one OFDM transmission and performs differential processing between two adjacent OFDM blocks. The proposed method is capable of obtaining both spatial and multipath diversity while reducing the effect of time variation of channels to a minimum. The performance improvement is confirmed by simulation results.  相似文献   

12.
正交空时分组码在OFDM系统中的性能估计   总被引:1,自引:0,他引:1  
在宽带OFDM系统中对正交空时分组码方案进行了研究,根据Almouti方案的译码原理给出了在正交空时分组码传输的频率选择性衰落信道条件下接收机输出瞬时信噪比的一般表达式,同时分两种情况进一步分析了其最小距离球界的符号差错性能。结果表明,在系统发送天线数、接收天线数及多径数目乘积较小的情形下,系统可以达到最大的分集增益。  相似文献   

13.
It is well known that orthogonal frequency division multiplexing (OFDM) is sensitive to carrier frequency offset (CFO) and suffers from a high peak‐to‐average ratio. In addition, the performance of OFDM is severely affected by strong co‐channel interference and strong narrowband interference. To mitigate the limitations of OFDM, we propose a new multi‐carrier transceiver based on frequency‐shift filter. A frequency‐shift filter can separate spectrally overlapping sub‐carrier signals by exploiting the spectral correlation inherent in the cyclostationary modulated signals. To increase spectral efficiency, we increase the percentage of spectral overlap between two adjacent sub‐channels. We derive an upper bound and a lower bound on the bit error rate performance of the proposed multi‐carrier transceiver in additive white Gaussian noise channel and frequency‐nonselective Rayleigh fading channel, respectively. Compared with OFDM, our simulation results show that the proposed multi‐carrier transceiver is much less sensitive to CFO and has a lower peak‐to‐average ratio; moreover, without any additional interference suppression technique, the proposed transceiver has the advantage of being able to mitigate strong co‐channel interference with CFO from the intended multi‐carrier signal and mitigate strong narrowband interference in additive white Gaussian noise channel and in Rayleigh fading channel in which a large CFO between the transmitted signal and the received signal often occurs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
对于任意抽头数的多输入多输出(MIMO)频率选择性Nakagami衰落信道,利用矩生成函数(MGF)方法和高斯Q函数的指数近似表达式,推导采用矩形M进制正交幅度调制(MQAM)的空频分组编码(SFBC)正交频分复用(OFDM)系统的平均误符号率(SER)性能的精确和近似解析表达式。数值计算和仿真结果证明了理论分析的正确性和近似分析的准确性。  相似文献   

15.
Space-time coding techniques significantly improve transmission efficiency in radio channels by using multiple transmit and/or receive antennas and coordination of the signaling over these antennas. Bit-interleaved coded modulation gives good diversity gains with higher order modulation schemes using well-known binary convolutional codes on a single transmit and receive antenna link. By using orthogonal frequency division multiplexing (OFDM), wideband transmission can be achieved over frequency-selective fading radio channels without adaptive equalizers. In this correspondence, we combine these three ideas into a family of flexible space-time coding methods. The pairwise error probability is analyzed based on the correlated fading assumption. Near-optimum iterative decoders are evaluated by means of simulations for slowly varying wireless channels. Theoretical evaluation of the achievable degree of diversity is also presented. Significant performance gains over the wireless local area network (LAN) 802.11a standard system are reported.  相似文献   

16.
In this letter, a differential space-frequency modulation (DSFM) scheme is proposed for multiple input multiple-output (MIMO)-orthogonal frequency-division multiplexing (OFDM) systems in broadband wireless communications. We assume that the fading channels keep constant only within each OFDM block, and may change independently from one OFDM block to another. The differential schemes proposed for MIMO-OFDM systems in the literature cannot successfully decode with such a rapidly fading channel, since the successful decoding of the previously existing schemes relies on the assumption that the fading channel keeps constant within a period of several OFDM blocks, and it changes slowly from a period of several OFDM blocks to another. In our proposed DSFM scheme, the transmitted signals are differentially encoded in the frequency domain within each OFDM block. Thus, the differential decoding can be performed over subcarriers within each single OFDM block. Furthermore, if a statistical channel power-delay profile (PDP) is known at the transmitter, we propose to create a smooth logical channel to improve the performance of the DSFM scheme. We obtain the smooth logical channel by sorting the channel frequency responses over subcarriers from a statistical point of view. If the logical channel is not smooth enough, we further consider a pruning process in which we use only the "good" part of the channel and get rid of the "bad" part of the channel. Simulation results show that the proposed DSFM scheme over a smooth logical channel (with pruning, if necessary) performs well for various channel PDPs.  相似文献   

17.
孙科  邵士海  唐友喜 《电子学报》2011,39(11):2680-2685
在分布式残余频偏信道中,考虑多径瑞利衰落,针对采用判决反馈检测的两发射天线STBC-OFDM链路,提出了一种发射功率优化方法:根据平均信道功率增益、残余频偏方差以及噪声方差的大小,以最小化平均误比特率下界为目标,设置两分布发射天线的发射功率,仿真结果表明:相比于传统的各天线满功率发射方法,所提方法能够在节省发射功率的同...  相似文献   

18.
In this paper, space-frequency-Doppler coded OFDM (SFDO-OFDM) scheme over the time-varying Doppler fading channels via the time-frequency duality is proposed. Based on the basis expansion model (BEM) and the time-frequency duality, through the circulant matrix diagonalized processing, the nonlinear time-varying Doppler fading channel is dually converted to the virtual frequency-selective linear channels. With OFDM module, subgrouping the subcarriers in OFDM through the block matrix method and fatherly general complex orthogonal coding (GCOD) on each corresponding block subcarriers, SFDO-OFDM codes for the general multiple input multiple output (MIMO) is thus constructed. And concatenating it with the signal constellation precoding, full maximum diversity gains including the inherent Doppler fading are achieved. Theoretical analysis and corroborating simulation results demonstrate that, comparing with existing Doppler coding alternatives, the proposed scheme can effectively and robustly combat the Doppler fading with high bandwidth efficiency and even lower bit error ratio (BER).  相似文献   

19.
Orthogonal frequency division multiplexing (OFDM) is robust against frequency selective fading, but it is very vulnerable to time selective fading. In quasi-orthogonal space-time coded OFDM (ST-OFDM) systems, channel variations cause not only inter-carrier interference among different subcarriers in one OFDM block, but also inter-transmit-antenna interference (ITAI). When applied in fast fading channels, common ST-ODFM receivers usually suffer from an irreducible error floor. In this letter, we apply frequency-domain correlative coding combined with a modified decision-feedback detection scheme to effectively suppress the error floor of quasi-orthogonal ST-OFDM over fast fading channels. The effectiveness of the proposed scheme in mitigating the effects of channel time selectivity is demonstrated through comparison with existing schemes such as zero-forcing, two-stage zero-forcing, and sequential decision feedback estimation  相似文献   

20.
Cooperative diversity is a transmission technique, where multiple terminals share their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we focus on a performance evaluation for orthogonal frequency division multiplexing (OFDM) transmission in cooperative networks under partial-band jamming (PBJ) environments. We present a bit error rate (BER) analysis for a cooperative diversity system with amplifying-and-forward (AF) relays over partially jammed Rayleigh fading channels. In addition, a simple jamming mitigation technique, called relay-based sub-band shifting method, is proposed. Through this approach, each sub-band of the amplified OFDM symbol at the relay can be changed by the predefined shifting rule of each relay, and the jamming effects at the destination are partially removed. Simulation results show that the proposed method improves significantly the BER performance at a low signal-to-jamming ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号