共查询到20条相似文献,搜索用时 15 毫秒
1.
D Anthony R Dempster S Fearn J Clements G Wells VH Perry K Walker 《Canadian Metallurgical Quarterly》1998,8(16):923-926
Children are at greater risk than adults of permanent brain damage and mortality following head injury or infection [1-5]. Rodent models have demonstrated a 'window of susceptibility' in young animals during which the brain parenchyma is at greater risk of acute neutrophil-mediated breakdown of the blood-brain barrier [6-7]. The exact mechanism of this age-related susceptibility to brain inflammation has yet to be defined, but animal models have revealed that the potent pro-inflammatory cytokine interleukin-1beta (IL-1beta) initiates an intense acute neutrophil-mediated inflammatory response in the brains of young rats and mice that is not seen in adults [6]. Here, we demonstrate the rapid induction of CXC chemokines (which contain a Cys-X-Cys motif), in particular the cytokine-induced neutrophil chemoattractant CINC-1, following the intracerebral administration of IL-1beta. The CXC chemokines produced a more intense neutrophil response in young rats than in adults. The IL-1beta-induced blood-brain barrier breakdown in young rats could be attenuated by an anti-CINC-1 neutralising antibody. These results show that the immature central nervous system (CNS) is dramatically more susceptible to the chemotactic effects of CXC chemokines. Blocking the CXC chemokine activity associated with brain inflammation inhibits neutrophil-mediated blood-brain barrier damage and represents a significant therapeutic possibility. 相似文献
2.
B Schlosshauer 《Canadian Metallurgical Quarterly》1993,15(5):341-346
The blood-brain barrier (BBB) is a complex structure formed by vascular endothelial cells, which serve to stabilize the homeostasic processes that are essential for neural functioning. The barrier relies on tight junctions between neighboring endothelial cells and a highly restricted passage of blood-borne components through the endothelial lining. Selective transport mechanisms guarantee the essential import and export of metabolites through the BBB into and out of the neural microenvironment. The dual functions of barrier and carrier depend on distinct proteins, some of which have been characterized in detail. 相似文献
3.
UE Schaible S Sturgill-Koszycki PH Schlesinger DG Russell 《Canadian Metallurgical Quarterly》1998,160(3):1290-1296
Mycobacterium avium (MAC) organisms multiply in phagosomes that have restricted fusigenicity with lysosomes, do not acidify due to a paucity of vacuolar proton-ATPases, yet remain accessible to recycling endosomes. During the course of mycobacterial infections, IFN-gamma-mediated activation of host and bystander macrophages is a key mechanism in the regulation of bacterial growth. Here we demonstrate that in keeping with earlier studies, cytokine activation of host macrophages leads to a decrease in MAC viability, demonstrable by bacterial esterase staining with fluorescein diacetate as well as colony-forming unit counts from infected cells. Analysis of the pH of MAC phagosomes demonstrated that the vacuoles in activated macrophages equilibrate to pH 5.2, in contrast to pH 6.3 in resting phagocytes. Biochemical analysis of MAC phagosomes from both resting and activated macrophages confirmed that the lower intraphagosomal pH correlated with an increased accumulation of proton-ATPases. Furthermore, the lower pH is reflected in the transition of MAC phagosomes to a point no longer accessible to transferrin, a marker of the recycling endosomal system. These alterations parallel the coalescence of bacterial vacuoles from individual bacilli in single vacuoles to communal vacuoles with multiple bacilli. These data demonstrate that bacteriostatic and bactericidal activities of activated macrophages are concomitant with alterations in the physiology of the mycobacterial phagosome. 相似文献
4.
5.
GC Su GW Arendash RN Kalaria KB Bjugstad M Mullan 《Canadian Metallurgical Quarterly》1999,818(1):105-117
Vascular wall levels of soluble beta-amyloid1-40 (Abeta1-40) are elevated in Alzheimer's disease (AD). Moreover, plasma Abeta levels are increased in familial AD, as well as in some cases of sporadic AD. To determine the histopathologic and behavioral consequences of elevated vascular Abeta levels, Abeta1-40 (50 micrograms in distilled water) or vehicle was intravenously infused twice daily into 3-month old male Sprague-Dawley rats for 2 weeks. Intravenous Abeta infusions impaired blood-brain barrier integrity, as indicated by substantial perivascular and parenchyma IgG immunostaining within the brain. Also evident in Abeta-infused animals was an increase in GFAP immunostaining around cerebral blood vessels, and an enhancement of OX-42 microglial immunostaining in brain white matter. Gross pulmonary hemorrhage was noted in most Abeta-infused animals. All the observed changes occurred in the absence of Congo red birefringence. No significant cognitive deficits were present in Abeta-infused animals during water maze acquisition and retention testing, which was conducted during the second week of treatment. These results indicate that circulating Abeta can: (1) induce vessel dysfunction/damage in both the brain and the periphery without complex Abeta fibril formation/deposition, and (2) induce an activation of brain astrocytes and microglia. Taken together, our results suggest that if circulating Abeta is elevated in AD, it is likely to have a pathophysiologic role. 相似文献
6.
Small stab wounds were made in the rat frontal lobe. The animals were injected with horseradish peroxidase intravenously at different times after the injury in order to study the extravasation of this tracer. There was a leakage of peroxidase into the brain during the first 3 days after the injury. The route of passage from the vessel lumen into the brain was through disrupted blood vessels in the injured region. Endothelial pinocytosis and formation of thin, trans-endothelial channel-like structures with or without a content of peroxidase were two other possible routes of passage across the blood vessels. Occasionally, badly damaged endothelial cells displayed a diffuse cytoplasmic distribution of peroxidase, indication a diffusion into and possibly across these injured cells. No widened tight junctions were seen. Thus, this study indicated four possible routes of passage of horseradish peroxidase across the endothelial cells: cellular gross damage with disrupture of the cells, diffusion across badly injured endothelial cells, possibly pinocytosis and formation of trans-endothelial channel-like structures. The cellular uptake of the tracer was vesicular in most neurons, astrocytes, oligodendrocytes and hematogeneous phagocytes. However, a diffuse distribution of the tracer was seen in some "dark" neurons near leaking vessels in the vicinity of the stab wound. 相似文献
7.
ET MacKenzie J McCulloch M O'Kean JD Pickard AM Harper 《Canadian Metallurgical Quarterly》1976,231(2):483-488
The systemic administration of norepinephrine has minimal effects on the cerebral circulation, perhaps due to blood-brain barrier mechanisms. To test hypothesis, the cerebrovascular effects of norepinephrine beyond the blood-brain barrier were studied in anesthetized baboons, Intraventricular norepinephrine (40 mug/kg) resulted in significant increases in cerebral blood flow (40%), cerebral oxygen consumption (21%), and cerebral glucose uptake (153%). Intracarotid hypertonic urea opens the blood-brain barrier by osmotic disruption; Consequent to hypertonic urea, the intracarotid infusion of norepinephrine, 50 ng/kg-min, significantly increase cerebral blood flow (49%), cerebral oxygen consumption (21%), and cerebral glucose uptake (76%), It appears probable that the cerebrovascular responses to norepinephrine are dependent on the integrity of the blood-brain barrier; It is likely that the increase in cerebral blood flow, associated with norepinephrine when it bypasses the barrier, is secondary to an increase in cerebral metabolism. 相似文献
8.
T Kossmann PF Stahel PM Lenzlinger H Redl RW Dubs O Trentz G Schlag MC Morganti-Kossmann 《Canadian Metallurgical Quarterly》1997,17(3):280-289
Revision surgery of cemented implants is indicated when mechanical failure causes severe pain and/or loss of function for the patient. Successful revision arthroplasty of cemented implants requires complete removal of the existing cement. Removal of old cement is an arduous task often causing damage to the surrounding bone tissue. In this study, the authors investigate the use of an Argon laser and the addition of dyes to enhance the laser ablation of bone cement. Methylene blue and red dye #13 were each added separately to polymethylmethacrylate (PMMA) bone cement powder. A continuous wave Argon ion laser (lambda = 514 nm) was used for cement ablation. Cement samples were ablated at different power levels (1.5, 2.3, and 3.0 W) and exposure times (30, 60, 90, 120 sec). The results show that the Argon laser was unable to ablate undyed PMMA. However, the addition of either methylene blue or red dye #13 greatly improved cement ablation by altering the cements' absorption characteristics. Results of Student's t-tests show a statistical difference between red and blue dyed PMMA mean ablation areas at all energy levels tested (P < .0002). As expected, all red ablation areas were greater than blue ablation areas at each energy level tested since red dye absorbs more energy at 514 nm than methylene blue dye. The results of this study suggest that by selectively altering the absorption characteristics of PMMA, laser removal of bone cement can be achieved. In addition, this study also shows that bone tissue does not absorb visible light energy at 514 nm, suggesting that bone cement may be removed with minimal damage to the surrounding bone tissue. 相似文献
9.
OBJECTIVE: To review the available evidence regarding efficacy, benefits, and risks of magnesium sulfate seizure prophylaxis in women with preeclampsia or eclampsia. DATA SOURCES: The English-language literature in MEDLINE was searched from 1966 through February 1998 using the terms "magnesium sulfate," "seizure," "preeclampsia," "eclampsia," and "hypertension in pregnancy." Reviews of bibliographies of retrieved articles and consultation with experts in the field provided additional references. METHODS OF STUDY SELECTION: All relevant English-language clinical research articles retrieved were reviewed. Randomized controlled trials, retrospective reviews, and observational studies specifically addressing efficacy, benefits, or side effects of magnesium sulfate therapy in preeclampsia or eclampsia were chosen. TABULATION, INTEGRATION, AND RESULTS: Nineteen randomized controlled trials, five retrospective studies, and eight observational reports were reviewed. The criteria used for inclusion were as follows: randomized controlled trials evaluating use of magnesium sulfate in eclampsia, preeclampsia, and hypertensive disorders of pregnancy; nonrandomized studies of historical interest; "classic" observational studies; and recent retrospective studies evaluating efficacy of magnesium sulfate therapy, using relative risk and 95% confidence intervals where applicable. Magnesium sulfate therapy has been associated with increased length of labor, increased cesarean delivery rate, increased postpartum bleeding, increased respiratory depression, decreased neuromuscular transmission, and maternal death from overdose. A summary of randomized, controlled trials in women with eclampsia reveals recurrent seizures in 216 (23.1%) of 935 women treated with phenytoin or diazepam, compared with recurrent seizures in only 88 (9.4%) of 932 magnesium-treated women. Randomized controlled trials in women with severe preeclampsia collectively revealed seizures in 22 (2.8%) of 793 women treated with antihypertensive agents, compared with seizures in only seven of 815 (0.9%) magnesium-treated women. CONCLUSION: The evidence to date confirms the efficacy of magnesium sulfate therapy for women with eclampsia and severe preeclampsia. However, there is a need for a randomized controlled trial to determine efficacy of magnesium sulfate therapy for women with mild preeclampsia and gestational hypertension. 相似文献
10.
BACKGROUND and PURPOSE: Reperfusion disrupts cerebral capillaries, causing cerebral edema and hemorrhage. Middle cerebral artery occlusion (MCAO) induces the matrix-degrading metalloproteinases, but their role in capillary injury after reperfusion is unknown. Matrix metalloproteinases (MMPs) and tissue inhibitors to metalloproteinases (TIMPs) modulate capillary permeability. Therefore, we measured blood-brain barrier (BBB) permeability, brain water and electrolytes, MMPs, and TIMPs at multiple times after reperfusion. METHODS: Adult rats underwent MCAO for 2 hours by the suture method. Brain uptake of 14C-sucrose was measured from 3 hours to 14 days after reperfusion. Levels of MMPs and TIMPs were measured by zymography and reverse zymography, respectively, in contiguous tissues. Other rats had water and electrolytes measured at 3, 24, or 48 hours after reperfusion. Treatment with a synthetic MMP inhibitor, BB-1101, on BBB permeability and cerebral edema was studied. RESULTS: Brain sucrose uptake increased after 3 and 48 hours of reperfusion, with maximal opening at 48 hours and return to normal by 14 days. There was a correlation between the levels of gelatinase A at 3 hours and the sucrose uptake (P<0.05). Gelatinase A (MMP-2) was maximally increased at 5 days, and TIMP-2 was highest at 5 days. Gelatinase B and TIMP-1 were maximally elevated at 48 hours. The inhibitor of gelatinase B, TIMP-1, was also increased at 48 hours. Treatment with BB-1101 reduced BBB opening at 3 hours and brain edema at 24 hours, but neither was affected at 48 hours. CONCLUSIONS: The initial opening at 3 hours correlated with gelatinase A levels and was blocked by a synthetic MMP inhibitor. The delayed opening, which was associated with elevated levels of gelatinase B, failed to respond to the MMP inhibitor, suggesting different mechanisms of injury for the biphasic BBB injury. 相似文献
11.
12.
The reversibility of osmotic opening of the blood-brain barrier was studied in dogs one hour after intracarotid 3 M urea injection. At that time the permeability of cerebral blood vessels to albumin is restored as evidenced by lack of Evans blue extravasation. Despite that, the response of the urea-perfused hemisphere to changes of perfusion pressure was abnormal. Blood flow in that hemisphere followed passively blood pressure changes in contrast to the contralateral hemisphere in which the blood flow remained independent of the perfusion pressure. 相似文献
13.
OBJECTIVE: This article reviews historical aspects of the blood-brain barrier (BBB) and recent advances in mechanisms to deliver therapeutic agents across the BBB for the treatment of intracerebral tumors and other neurological diseases. METHODS: The development of the osmotic BBB disruption procedure as a clinically useful technique is described. Osmotic BBB disruption is contrasted with alternative methods for opening or bypassing the BBB, including pharmacological modification of the BBB with bradykinin and direct intracerebral infusion. RESULTS: Laboratory studies have played a fundamental role in advancing our understanding of the BBB and delivery of agents to brain. Preclinical animal studies will continue to serve an integral function in our efforts to improve the diagnosis and treatment of a number of neurological disorders. Techniques involving the modification of the BBB and/or blood-tumor barrier to increase delivery of therapeutic agents have been advanced to clinical trials in patients with brain tumors with very favorable results. CONCLUSION: Improving delivery of agents to the brain will play a major role in the therapeutic outcome of brain neoplasms. As techniques for gene therapy are advanced, manipulation of the BBB also may be important in the treatment of central nervous system genetic disorders. 相似文献
14.
WC Jean SR Spellman ES Nussbaum WC Low 《Canadian Metallurgical Quarterly》1998,43(6):1382-96; discussion 1396-7
Recent evidence indicates that thrombolysis may be an effective therapy for the treatment of acute ischemic stroke. However, the reperfusion of ischemic brain comes with a price. In clinical trials, patients treated with thrombolytic therapy have shown a 6% rate of intracerebral hemorrhage, which was balanced against a 30% improvement in functional outcome over controls. Destruction of the microvasculature and extension of the infarct area occur after cerebral reperfusion. We have reviewed the existing data indicating that an inflammatory response occurring after the reestablishment of circulation has a causative role in this reperfusion injury. The recruitment of neutrophils to the area of ischemia, the first step to inflammation, involves the coordinated appearance of multiple proteins. Intercellular adhesion molecule-1 and integrins are adhesion molecules that are up-regulated in endothelial cells and leukocytes. Tumor necrosis factor-alpha, interleukin-1, and platelet-activating factor also participate in leukocyte accumulation and subsequent activation. Therapies that interfere with the functions of these factors have shown promise in reducing reperfusion injury and infarct extension in the experimental setting. They may prove to be useful adjuncts to thrombolytic therapy in the treatment of acute ischemic stroke. 相似文献
15.
Two glucose transporter (GLUT) isoforms have been identified in brain. The GLUT1 isoform is abundant in cerebral microvessels and may be present in glia and neurons, whereas GLUT3 is probably the major neuronal glucose transporter. This study investigates whether GLUT3 is also present in microvessels from rat, human, and canine brain, by means of antisera directed against the divergent C-terminal sequences of mouse and human GLUT3. GLUT1 was detected in whole brain as two molecular mass forms: 55 kDa in microvessels and 45 kDa in cortical neuronal/glial membranes. With the aid of the appropriate antisera to the species-specific sequences, GLUT3 was detected in rat and human cortical membranes but not in isolated rat or human microvessels. These antisera failed to detect GLUT3 in either canine cortical membranes or canine microvessels, implying additional species specificity in the C-terminal sequence. 相似文献
16.
In the present study, the effect of bradykinin on basal and precontracted mouse-isolated trachea was investigated. In basal conditions mouse-isolated tracheal rings do not respond to bradykinin. However, when the tracheal rings were precontracted with carbachol (10(-7) M) a relaxation with bradykinin (3 x 10(-9)-3 x 10(-7)) was found. The maximal response amounted 69.7+/-4.1% (n=15) with a pD2 value of 7.2+/-0.21. The selective bradykinin B2 receptor antagonist HOE 140 (10(-10)-10(-8) M) antagonized the bradykinin-induced relaxation, while the bradykinin B1 receptor antagonist des-Arg9-Leu8-bradykinin (10(-6) M) had no influence. The selective bradykinin B1 receptor agonist des-Arg9-bradykinin (10(-6) M) caused a small relaxation (8.4+/-2.5%, n=6), which could be antagonized completely by the selective bradykinin B1 receptor antagonist des-Arg9-Leu8-bradykinin (10(-6) M) while addition of the selective bradykinin B2 receptor antagonist HOE 140 (10(-8) M) was without effect. In the presence of indomethacin (10(-6) M) the relaxation of bradykinin was completely abolished. Pretreatment of the tracheal rings with capsaicin, or the presence of the selective NK1 receptor antagonist RP 67851 (10(-6) M) or the presence of the nitric oxide synthase inhibitor L-NAME (3 x 10(-4) M) had no effect on the bradykinin-induced relaxation. In conclusion, these results demonstrate that the mouse-isolated tracheal is a preparation in which bradykinin exerts a relaxant response via stimulation of bradykinin B2 receptors. This response is probably mediated by prostaglandins. 相似文献
17.
I Skoog A Wallin P Fredman C Hesse O Aevarsson I Karlsson CG Gottfries K Blennow 《Canadian Metallurgical Quarterly》1998,50(4):966-971
We investigated blood-brain barrier (BBB) function in relation to Alzheimer's disease (AD) and vascular dementia (VAD) in the very elderly. Sixty-five 85-year-old persons from a population-based sample were followed for 3 years; 29 were demented at age 85 (13 with AD, 14 with VAD, and 2 with other dementias), 7 developed dementia during follow-up, and 29 remained nondemented. CSF/serum albumin ratio was used as as a measure of BBB function. Dementia was defined according to the DSM-III-R, AD according to the NINCDS-ADRDA criteria, and VAD according to the NINDS-Association Internationale pour la Recherche et l'Enseignement en Neurosciences (AIREN) criteria. Mean CSF/serum albumin ratio was higher in all dementias (8.5 +/- 4.3; p = 0.007) and in the subtypes AD (8.9 +/- 5.3; p = 0.046) and VAD (8.7 +/- 3.5; p = 0.002) than in nondemented individuals (versus 6.5 +/- 2.0), but it was not related to dementia severity. Nondemented women at age 85 (n = 3) who developed dementia during the follow-up had a higher CSF/serum albumin ratio than those not developing dementia (10.4 +/- 2.0 versus 6.0 +/- 1.9; p = 0.007). Nondemented individuals lacking the apolipoprotein E epsilon3 allele (n = 4) had a higher CSF/serum albumin ratio (9.3 +/- 0.8 versus 6.6 +/- 2.1; p = 0.029) than other individuals. A relative BBB dysfunction is associated with both AD and VAD among very elderly individuals. This finding is possibly found early in the disease before the onset of clinical dementia. 相似文献
18.
B Culver K Inzana J Jones G Troy R Kroll B Culver B Jortner 《Canadian Metallurgical Quarterly》1998,59(11):1503-1510
OBJECTIVE: To design a repeatable technique for reversible, hyperosmotic blood-brain barrier disruption (BBBD) in dogs and evaluate clinical effects of multiple BBBD. ANIMALS: 10 healthy adult dogs. PROCEDURE: Using fluoroscopic guidance, an arterial catheter was directed into the internal carotid artery via the femoral artery of 10 dogs. Blood-brain barrier disruption was achieved in 5 dogs, using intracarotid infusion of mannitol. Five control dogs received only saline solution. After recovery, dogs were monitored for clinical signs of disease before a second, nonsurvival procedure was performed 2 to 3 weeks later. BBBD was estimated, using computed tomographic (CT) densitometry values, as well as Evan's blue dye staining on necropsy specimens. RESULTS: Seven dogs completed the entire study. Two treatment dogs were lost after the first infusion because of deteriorating neurologic function attributed to CNS edema and increased intracranial pressure. One control dog was lost because of vessel wall damage during catheterization. The remaining dogs had only transient neurologic, ocular, and vasculature injuries. Successful BBBD was documented in all treated dogs by use of CT and Evan's blue dye evaluation. CONCLUSION: Repeated catheterization of the internal carotid artery and disruption of the blood- brain barrier is possible in dogs. CLINICAL RELEVANCE: Refinement of this technique would be useful not only for improved delivery of chemotherapeutic agents in patients with brain tumors, but also would allow further investigation of new treatments involving genetically engineered retroviruses and monoclonal antibodies. 相似文献
19.
S Nag 《Canadian Metallurgical Quarterly》1996,55(8):880-888
The occurrence of blood-brain barrier (BBB) permeability alterations and neovascularization are well documented in the cerebral cortical cold-injury model. This model was used to determine whether the glucose transporter (glutI) protein was present in endothelium of cerebral vessels with breakdown of BBB to protein and when regenerating endothelial cells become immunoreactive for glutI protein. Secondly, the protein products of c-fos and c-jun were localized to determine whether these early immediate genes are activated in this model. Observations were made over a period of 12 hours to 14 days after the cold-injury. Blood-brain barrier permeability was assessed using horseradish peroxidase (HRP) as a tracer. Since HRP may not be able to enter thrombosed vessels within the cold lesion, immunohistochemistry was used to detect extravasation of endogenous serum proteins using antisera to rat serum proteins. The proteins-glut1, GFAP, c-fos and c-jun-were localized by immunohistochemistry. Endothelium of vessels which were permeable to protein, whether in the cold-injury site or in the perilesional area, all contained glut1 protein; hence, the presence of glut1 did not appear to correlate with an intact BBB to protein. An interesting point is that in the process of neovascularization, regenerating endothelial cells become immunoreactive for glut1 at 5 days and this coincides with the presence of tight junctions in these cells. Immunoreactivity for c-fos was observed in regenerating endothelium within the lesion site, in astrocytes, and to a lesser extent in endothelial cells and neurons in the perilesional area. Few astrocytes showed immunoreactivity for c-jun at 4 and 5 days. Possibly, the growth factors generated to promote angiogenesis and repair led to activation of the c-fos gene with deposition of c-fos protein. The results suggest that during nervous system development or endothelial regeneration, the presence of glut1 in cerebral endothelium coincides with the presence of an intact BBB to protein and protein tracers. However, in pathological states presence of glut1 in cerebral endothelium does not appear to correlate with an intact BBB to protein. This model lends itself to the study of angiogenesis and repair processes in the cerebral cortex in an environment unaffected by ischemia and thus the findings may be relevant to traumatic injuries of the human cerebral cortex. 相似文献
20.
Blastocyst-derived pluripotent mouse embryonic stem cells can differentiate in vitro to form so-called embryoid bodies (EBs), which recapitulate several aspects of murine embryogenesis. We used this in vitro model to study oxygen supply and consumption as well as the response to reduced oxygenation during the earliest stages of development. EBs were found to grow equally well when cultured at 20% (normoxia) or 1% (hypoxia) oxygen during the first 5 days of differentiation. Microelectrode measurements of pericellular oxygen tension within 13- to 14-day-old EBs (diameter 510-890 micron) done at 20% oxygen revealed efficient oxygenation of the EBs' core region. Confocal laser scanning microscopy analysis of EBs incubated with fluorescent dyes that specifically stain living cells confirmed that the cells within an EB were viable. To determine the EBs' capability to sense low oxygen tension and to specifically respond to low ambient oxygen by modulating gene expression we quantified aldolase A and vascular endothelial growth factor (VEGF) mRNAs, since expression of these genes is upregulated by hypoxia in a variety of cells. Compared with the normoxic controls, we found increased aldolase A and VEGF mRNA levels after exposing 8- to 9-day-old EBs to 1% oxygen. We propose that EBs represent a powerful tool to study oxygen-regulated gene expression during the early steps of embryogenesis, where the preimplantation conceptus resides in a fluid environment with low oxygen tension until implantation and vascularization allow efficient oxygenation. 相似文献