首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
萃取置换法回收处理氟苯生产废水中的苯酚   总被引:1,自引:0,他引:1  
以磷酸三丁酯(TBP)为萃取剂、NaOH水溶液为反萃剂,采用萃取置换法回收处理氟苯生产废水中的苯酚.研究了萃取剂浓度、萃取时间、pH值及相比对萃取率的影响和相比、反萃时间及NaOH溶液浓度对反萃率的影响.经3级萃取和2级反萃取,苯酚的回收率达98%,废水中苯酚含量可降至19.7 mg/L.萃取置换法操作简单,费用低廉,易于工业化.  相似文献   

2.
本研究采用以D80为稀释剂的t-BAMBP萃取体系,从高钾卤水中萃取分离铷。考察了稀释剂种类、萃取剂浓度、萃取相比、碱度、萃取时间、水洗相比、反萃剂酸度、反萃相比、反萃时间等相关因素对分离的影响。选定萃取剂浓度为0.8 mol/L t-BAMBP,碱度0.8 mol/L NaOH,萃取相比2.5/1,萃取时间1 min,水洗相比2.5/1,反萃酸度1mol/L HCl,反萃时间1 min,反萃相比5/1等条件。经两次四级萃取,一次五级水洗,两次两级反萃获得纯度达97.5%的RbCl,铷总萃取率达92.7%。  相似文献   

3.
萃取法分离提取深层富钾卤水中的硼   总被引:1,自引:0,他引:1  
采用溶剂萃取法分离提取江陵凹陷深层富钾卤水中的硼,研究了萃取剂种类、体积分数、萃取时间、萃取相比、反萃剂体积分数、反萃相比和反萃时间等因素对萃取和反萃取的影响。结果表明:2-乙基-1,3-己二醇是较合适的硼萃取剂;在以体积分数为15%的2-乙基-1,3-己二醇、35%异辛醇的混合醇为萃取剂,50%磺化煤油为稀释剂,萃取相比为1∶1,萃取时间为15min的条件下,硼单级萃取率达95%以上,实现了硼与卤水中钾、钠、钙和镁的有效分离;在反萃剂NaOH浓度为0.625mol/L,反萃相比为2.5∶1,反萃时间为15min的条件下,硼单级反萃率达94%;最优的反萃取条件在确保反萃率较高的同时,提高了反萃液中B2O3质量浓度,由原料的8.33g/L富集到反萃液的19.10g/L,有助于后续硼酸蒸发浓缩阶段能耗的降低。  相似文献   

4.
李西辉 《广州化工》2010,38(1):81-84
研究了LIX84-I对氨性溶液中铜的萃取和反萃取过程,考察了相比、萃取剂体积浓度、振荡时间及萃取次数对萃取过程的影响,并优化萃取试验条件:萃取相比为1:3;萃取剂体积分数为32%;振荡时间为30 s;经过一次萃取,铜萃取率可达98.72%。用硫酸反萃,主要研究了反萃硫酸浓度、振荡时间、相比、反萃次数对反萃的影响,并优化反萃试验条件:反萃取硫酸浓度140g/L;振荡时间为30 s,相比为1:1,经过两次反萃后有机相中铜浓度达到99%以上。  相似文献   

5.
研究了t-BAMBP[4-叔丁基-2-(α-甲基苄基)苯酚]/磺化煤油萃取体系,从提铯后的母液中,萃取分离钾铷的过程。考察了萃取时间、萃取剂浓度、萃取相比等萃取条件、水洗条件和反萃取条件对铷钾分离的影响。确定了适宜的工艺条件为:t-BAMBP浓度为0.7 mol/L,相比O/A=3∶1,萃取时间为5 min;以0.1 mol/L氯化钠溶液为洗涤剂,洗涤相比O/A=4∶1;以0.5 mol/L 氯化氢溶液为反萃剂,反萃相比O/A=5∶1。经过5级逆流反萃,铷的反萃率达到95.6%以上,铷钾的分离系数较高,实现了铷钾分离。  相似文献   

6.
以铜熔炼烟灰浸出液为研究对象,采用N902萃取剂从中分离回收铜,并将铜元素进行富集。研究了萃取剂浓度、相比(O/A)、溶液pH值、振荡时间对铜萃取分离的影响,以及反萃剂浓度、相比、振荡时间对铜反萃率的影响。试验结果表明,在萃取剂质量分数12%、相比(O)/(A)=1∶2、溶液pH值为2.0、振荡时间6 min的萃取条件下,通过两级逆流萃取,铜、锌、铁的萃取率分别为98.26%、1.29%、2.28%;铜与铁、锌的分离系数分别达到4346和2425,实现了铜与铁、锌的有效分离。在选定反萃剂硫酸铜浓度为2.5 mol/L、相比(O)/(A)=2∶1、振荡时间6 min的条件下,通过两级逆流反萃,铜的反萃率为94.68%,反萃后铜质量浓度达到7.04 g/L,相较于浸出液中铜离子质量浓度提高了约3.72倍,实现了铜离子的富集,得到的硫酸铜溶液可用于电积铜生产。  相似文献   

7.
研究了以2-丁基-2-乙基-1,3-丙二醇为萃取剂,三氯甲烷为稀释剂,从四川平落地下卤水中萃取提硼。通过萃取条件的考察和筛选,最终确定萃取剂浓度为1.0mol/L,相比为1∶1,萃取时间为10min,萃取级数为二级的最优萃硼条件,此时萃取率可达98.56%,萃取剂的饱和萃取容量达44.25g/L(以H3BO3计)。同时,探究了以氢氧化钠溶液作为反萃剂的最佳反萃条件:反萃剂浓度为0.3mol/L,反萃相比为1∶1,反萃时间为8min,反萃级数为二级,其反萃率达到95.49%。在最优萃取和反萃条件下,经两级萃取和两级反萃,硼酸的回收率达到94.87%。  相似文献   

8.
采用t-BAMBP[4-叔丁基-2-(α-甲苄基)酚]+磺化煤油的萃取体系,从回收钠盐后的浓缩液中萃取分离低浓度的铷,考察了料液碱度、t-BAMBP浓度、萃取相比、洗涤相比等影响因素对铷萃取以及反萃的影响。通过实验获得了适宜的单级萃取、洗涤和反萃的工艺条件:t-BAMBP浓度为1 mol/L,料液碱度为0.6 mol/L,萃取相比O/A=3,萃取时间为2 min;洗水用0.1 mol/L的氯化钠溶液,相比O/A=3,振荡时间为5 min;反萃剂盐酸浓度为1.0 mol/L,反萃相比O/A=5,反萃时间为8 min。以此条件进行9级分馏萃取(3级萃取、6级洗涤),铷萃取率达92.95%,钾100%留在水相中;进行5级逆流反萃,铷反萃率达99.62%。该萃取工艺成功地实现了低浓度铷的高效分离。  相似文献   

9.
针对现行湿法炼锌综合回收铟过程中存在的铟分散损失严重和直收率低的问题,采用直接萃取法从次氧化锌酸性浸出液中回收铟,考察了萃取剂浓度、混合时间、硫酸浓度和萃取温度等因素对铟及主要金属离子萃取率及盐酸浓度和相比对铟反萃率的影响,绘制了萃取平衡等温线和反萃平衡等温线,进行了小型模拟实验和连续逆流萃取-反萃实验,重点考察主要金属离子在萃取和反萃过程中的分布与走向.结果表明,以10%P204为有机相,在相比(A/O)为2/1、逆流萃取级数为3级的条件下,浸出液中铟萃取率达99.9%,杂质铁、锌和镉的萃取率分别为1.5%,0.5%和1.1%.得到的负载有机相采用6 mol/L盐酸反萃,相比为1/5时4级反萃后,铟反萃率达100%,镉、锌和铁基本被全部反萃,反萃后的贫有机相可循环使用.  相似文献   

10.
《辽宁化工》2021,50(9)
研究了用新癸酸萃取剂从硫酸钴萃余液中萃取分离镍镁制得高纯硫酸镍,考察了萃取体系pH、萃取相比、萃取平衡时间、反萃过程硫酸浓度对萃取率的影响。结果表明:当有机相为45%新癸酸萃取剂+55%磺化煤油、皂化率为50%、与水相混合振荡萃取、控制V_O/V_A=1∶3、萃取时间为3 min时,单级萃取率达81.2%,四级萃取率达99%。反萃液控制pH在2~3,镍总回收率为99%,反萃液中镍总质量浓度大于90 g·L~(-1),浓缩结晶后可制备得到电池级硫酸镍。  相似文献   

11.
《分离科学与技术》2012,47(16):2495-2501
Solvent extraction is generally considered as one of the important and effective techniques to remove toxic phenol from wastewater. This paper explores the solvent extraction of phenol from wastewater using bis(2-ethylhexyl) sulfoxide (BESO) as extractant. Various parameters such as equilibrium time, the volume percentage of BESO, pH value, and ionic strength of the aqueous solution on the phenol extraction were investigated. The results indicated that BESO exhibited excellent performance of phenol extraction. The extraction percentage increased from 97.26% to 99.47%, varying the BESO concentration from 10% (v/v) to 30% (v/v). The extraction percentage decreased with increasing temperature in the range of 298-343 K. FTIR spectra of fresh and phenol loaded BESO organic phase indicated the existence of the hydrogen bonding interactions between S=O groups and phenol molecules. The relationship between log D and log [BESO] suggested the stoichiometry of the extracted species was a 1:1 complex, namely, [PhOH]·[BESO]. Phenol stripping from the loaded organic phase by sodium hydroxide was feasible, and more than 99% of phenol could be stripped when the NaOH concentration was 0.5 mol L?1. The results obtained established that BESO/kerosene extraction system has potential for practical application in the phenol removal and recovery.  相似文献   

12.
选用P507(0-(2-乙基已基)-2-乙基已基磷酸酯)和N503(N,N二-(1-甲基庚基)乙酰胺)2种有机萃取剂对酚的质量浓度为4 500 mg/L的废水进行处理.在煤油体系中,考察了油水体积比、pH值、萃取体系相比、萃取温度、萃取时间等因素对P507和N503萃取剂效果的影响.试验结果表明,在pH值为3~3.5,...  相似文献   

13.
Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol from wastewater and obtain valuable phenolic compound.One of potential method is extraction using green based liquid organic solvent.Therefore,the feasibility of using palm oil was investigated.In this research,palm oil based organic phase was used as diluents to treat a simulated wastewater containing 300×10~(-6) of phenol solution using emulsion liquid membrane process(ELM).The stability of water-in-oil(W/O) emulsion on diluent composition and the parameters affecting the phenol removal efficiency and stability of the emulsion;such as emulsification speed,emulsification time,agitation speed,surfactant concentration,pH of external phase,contact time,stripping agent concentration and treat ratio were carried out.The results of ELM study showed that at ratio7 to 3 of palm oil to kerosene,5 min and 1300 r·min~(-1) of emulsification process the stabile primary emulsion were formed.Also,no carrier is needed to facilitate the phenol extraction.In experimental conditions of500 r·min~(-1) of agitation speed,3%Span 80,pH 8 of external phase,5 min of contact time,0.1 mol·L~(-1) NaOH as stripping agent and 1:10 of treat ratio,the ELM process was very promising for removing the phenol from the wastewater.The extraction performance at about 83%of phenol was removed for simulated wastewater and an enrichment of phenol in recovery phase as phenolate compound was around 11 times.  相似文献   

14.
采用高沸点萃取剂邻仲丁基苯酚萃取回收废水中的二甲基甲酰胺。对质量浓度为100 g/L的模拟废水,在25℃下以邻仲丁基苯酚为萃取剂时分配系数可达6.92,远高于低沸点溶剂氯仿萃取时的分配系数0.91。在相比1∶1(体积比),单级萃取时,萃取率即高达87.54%。3级萃取时,废水中N,N-二甲基甲酰胺(DMF)质量浓度从100 g/L降低至2.44 g/L。在邻仲丁基苯酚中加入稀释剂可改善澄清分层速度。  相似文献   

15.
N-503萃取焦化废水的研究   总被引:3,自引:0,他引:3  
庞世平 《山西化工》2003,23(1):8-9,12
用N—503萃取含酚焦化废水。研究了萃取剂组成、油水比、废水酸度对分配系数的影响以及萃取温度、萃取时间对脱酚效果的影响。  相似文献   

16.
皂化P204微乳液膜处理含锌废水的研究   总被引:3,自引:0,他引:3  
研究以皂化P204为载体的微乳液膜配方及其稳定性.采用P204/Span80/煤油/NaOH微乳体系萃取废水中Zn^2+,考察了P204与煤油和Span80的质量比、NaOH的浓度、乳水比、外水相pH值、油相重复使用次数等因素对Zn^2+萃取率的影响.结果表明,当P204与煤油的质量比为1:2.5,P204与Span80的质量比为1:1,NaOH浓度为1.5mol/L,乳水比为1:4(体积比),废水pH值为5.5时,萃取10min,P204/煤油/NaOH微乳液膜对Zn^2+萃取率可达99.72%,P204/Span80/煤油/NaOH微乳液膜对Zn^2+萃取率可达99.98%,微乳液膜不仅稳定性好、萃取效率高,而且工艺简单、膜相可自动破乳、油相可重复使用.  相似文献   

17.
以撞击流—旋转填料床(IS—RPB)作为萃取器和反萃取器,以磷酸三了酯(TBP)作为络合萃取剂,以煤油为稀释剂,以氢氧化钠溶液为反萃剂,对含苯酚废水进行了萃取与反萃取的单级试验研究。在研究IS—RPB两个主要操作参数撞击流初速ν_0和转速N,油水比R以及TBP在油相中的体积分数对级分配率D的影响基础上,找到了最适宜的工艺条件,在此条件下得到了高达95%以上的除酚率。  相似文献   

18.
P_(204)/Span80/煤油/NaOH微乳体系萃取分离Ni~(2+)的研究   总被引:2,自引:0,他引:2  
周富荣 《应用化工》2007,36(7):680-682,695
研究了以皂化P204和Span80为混合表面活性剂的微乳液配方及其稳定性,通过P204/Span80/煤油/NaOH微乳体系萃取分离N i2+的研究,考察了P204与煤油和Span80的质量比、NaOH的浓度、乳水比、外水相pH值、油相重复使用次数等因素对N i2+萃取率的影响。结果表明,当P204与煤油的质量比为1∶2.5,P204与Span80的质量比为1∶1,NaOH浓度为1.5 mol/L,乳水比为1∶5(体积比),废水pH值为5.5时,萃取10 m in,该微乳体系对N i2+萃取率可达99.9%。该微乳体系具有稳定性好、工艺简单、成本低、萃取效率高等优点。  相似文献   

19.
BACKGROUND: The manufacture of phenolic resins causes the generation of hazardous wastes composed of high concentrations of phenol and formaldehyde together with low molecular weight polymers in lower concentrations. The separation of phenol, mainly from synthetic aqueous solutions, has been successfully achieved by means of solvent extraction, 8 - 17 but few references tackle the treatment of industrial wastes because of their complex behaviour. This work aims at the experimental and theoretical analysis of the recovery of phenol from industrial aqueous wastes using CYANEX 923 as organic extractant. RESULTS: Aqueous condensates containing phenol in the concentration range 40–280 g L?1, and formaldehyde in the range 30–110 g L?1, were contacted with CYANEX 923 to analyse the influence of feed pH and of concentration of the selective extractant on the extraction equilibrium. Concerning the pH of the feed phase, it was observed that for values higher than 8.0 a decrease in the distribution ratio of phenol between the organic and the aqueous phases took place. Additionally, caustic conditions promoted formaldehyde degradation reactions in the feed phase. Phenol recovery from the loaded organic extractant was obtained by stripping with NaOH solutions. Best results were obtained working with a CYANEX 923 concentration 0.6 mol L?1. CONCLUSION: Analysis of the experimental data established the optimum conditions of the selective extraction of phenol from industrial condensates. A mathematical model based on the extraction reaction of 2 moles of phenol per mole of Cyanex 923 described successfully the experimental results. The equilibrium parameter was estimated from the fitting of experimental data to the mathematical model obtaining a value of K = 750.9 (mol L?1)?2. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号