首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用快速有效的响应面分析法对米曲霉ASPE0485产β-葡萄糖苷酶的发酵培养基进行优化,利用PlackettBurman显著因子实验和Box-Behnken响应面分析优化了β-葡萄糖苷酶产生菌的发酵培养基,确定摇瓶发酵的最佳培养基组成为(%,w/v):玉米芯3.8%、大豆蛋白胨0.5%、KH2PO40.5%、MgSO4.7H2O0.05%、CaCl20.05%、吐温-800.27%和接种量5.3%;在此条件下发酵,得到酶活为21.1U/mL比原始酶活(17.65U/mL)提高了19.55%。   相似文献   

2.
响应面法优化米曲霉3.48 1产β-葡萄糖苷酶发酵工艺的研究   总被引:1,自引:1,他引:0  
对菌株米曲霉(Aspergillus Oryzae)3.481产β-葡萄糖苷酶发酵工艺进行研究.通过单因素试验确定最佳碳源、氮源、pH和无机盐.采用响应面Box-Benhnken中心组合试验设计,优化米曲霉发酵生产β-葡萄糖苷酶的工艺条件,同时建立酶活力随麸皮+淀粉(1:1,W/W)质量分数、硫酸铵质量分数和初始pH变化的二次回归方程.结果表明:最优发酵条件是麸皮+淀粉(1:1,W/W)质量分数10.93%、硫酸铵质量分数0.4%、pH5.0,在此条件下β-葡萄糖苷酶活力可达1.89 U/mL.  相似文献   

3.
为了提高米曲霉UV-LiCl-38产β-半乳糖苷酶的能力,采用Plackett-Burman重要因素筛选实验和中心组合实验对其基础发酵培养基进行了优化。优化后的培养基中麸皮与营养液的比例为1∶1(w/v),营养液中含乳糖2.39%(w/w),蔗糖1%(w/w),(NH4)2SO40.56%(w/w),牛肉膏0.5%(w/w),KH2PO41.8%(w/w),MgSO40.5%(w/w),MnSO40.5%(w/w),营养液的pH为4.5。在该培养基中30℃发酵5d,酶活达到188.92U/mL,比基础培养基的酶活145.62U/mL提高了29.7%。   相似文献   

4.
对米曲霉FZ58β-葡萄糖苷酶固体发酵培养基进行优化,确定最适碳源为甘蔗渣、氮源为黄豆饼粉、固液比为1:3。对FZ58固体发酵的产酶条件优化结果如下:发酵初始pH自然,发酵温度36℃,发酵周期为120h。酶学特性研究表明:酶最适作用温度是60℃,最适作用pH为5.0。  相似文献   

5.
通过Plackett-Burman实验确定了培养基组分中对Aspergillus niger Glu05产β-葡萄糖苷酶影响较为显著的因子是麸皮、蛋白胨和Na+;在Plackett-Burman实验基础上开展响应面实验优化培养基组分,优化后的β-葡萄糖苷酶活力达到了48.11 IU/mL,较初始酶活力32.87 IU/mL提高了46%。  相似文献   

6.
黑曲霉产β-葡萄糖苷酶发酵培养基的优化研究   总被引:1,自引:0,他引:1  
朱凤妹  李军  杜彬  刘长江 《酿酒科技》2008,(3):43-45,47
利用响应面方法对黑曲霉产β-葡萄糖苷酶的发酵培养基进行了优化,研究碳源、氮源、无机盐和pH对β-葡萄糖苷酶活力的影响.利用Box-Benhnken设计和响应面方法对碳源浓度、氮源浓度、初始pH进行试验分析.结果表明,β-葡萄糖苷酶的最佳发酵培养基为:麸皮2%,蛋白胨0.1%,KH2PO40.1%,初始pH6.0.经发酵后的β-葡萄糖苷酶活力达325.62 u/mL.  相似文献   

7.
黑曲霉β-葡萄糖苷酶发酵培养基的优化   总被引:10,自引:0,他引:10  
用响应面方法对黑曲霉(Aspergillusniger)ZJ1生产β-葡萄糖苷酶的培养基进行了优化。首先用部分因子设计对培养基组分稻草粉、麦麸、大麦粉、(NH4)2SO4及pH对β-葡萄糖苷酶活性的影响进行了评价,并找出主要影响因子为稻草粉和(NH4)2SO4,两者均为负影响,其它组分对酶活没有显著影响;再用最陡爬坡路径逼近最大响应区域;最后用中心组合设计及响应面分析确定主要影响因子的最佳浓度。经响应面分析获得的优化培养基组成(g/L)为:稻草粉7.02,麦麸16.65,大麦粉16.65,(NH4)2SO42.44,KH2PO40.5,MgSO4·7H2O0.5。经优化后,β-葡萄糖苷酶酶活性达到403.7U/mL。  相似文献   

8.
对米曲霉FZ58β-葡萄糖苷酶固体发酵培养基进行优化,确定最适碳源为甘蔗渣、氮源为黄豆饼粉、固液比为1:3。对FZ58固体发酵的产酶条件优化结果如下:发酵初始pH自然,发酵温度36℃,发酵周期为120h。酶学特性研究表明:酶最适作用温度是60℃,最适作用pH为5.0。  相似文献   

9.
采用Plackett-Burman(PB)分析法和响应面法(Response surface methodology,RSM)对臭曲霉产α-葡萄糖苷酶的发酵条件进行了优化。PB实验表明麦芽浸粉、KH2PO4、尿素、pH和接种量具有显著影响效应;然后利用最陡爬坡实验逼近最大响应区域,通过中心组合实验对影响产酶的主要因素进行研究,建立了影响因素与响应值之间的回归方程,并获得最佳发酵条件:麦芽浸粉38.13g/L,KH2PO47.88g/L,尿素0.91g/L,pH为5.76,接种量为9.63%。在此优化条件下发酵,α-葡萄糖苷酶产量提高了35%左右,达到1218.6U/mL。   相似文献   

10.
采用Plackett-Burman(PB)分析法和响应面法(Response surface methodology,RSM)对臭曲霉产α-葡萄糖苷酶的发酵条件进行了优化。PB实验表明麦芽浸粉、KH2PO4、尿素、pH和接种量具有显著影响效应;然后利用最陡爬坡实验逼近最大响应区域,通过中心组合实验对影响产酶的主要因素进行研究,建立了影响因素与响应值之间的回归方程,并获得最佳发酵条件:麦芽浸粉38.13g/L,KH2PO47.88g/L,尿素0.91g/L,pH为5.76,接种量为9.63%。在此优化条件下发酵,α-葡萄糖苷酶产量提高了35%左右,达到1218.6U/mL。  相似文献   

11.
米曲霉产β-葡萄糖苷酶发酵条件的研究   总被引:3,自引:1,他引:3  
将经过筛选的产β-葡萄糖苷酶的米曲霉,通过单因子及正交实验对其产酶发酵条件进行研究,结果显示:培养基为玉米芯3%、豆饼粉0.2%、KH2PO40.4%、CaCl20.04%、MgSO40.04%,自然pH,装液量(300mL三角瓶)为60mL,发酵时间为60h时为最佳发酵条件。  相似文献   

12.
采用响应面方法对米曲霉产AMP脱氨酶的发酵培养基进行优化。首先通过Plackett-Burman实验,筛选出3个主要的影响因素:蛋白胨,MgSO4.7H2O和吐温-80。然后运用爬坡路径法对这3种因子进行实验,获得这3种重要因子的最适质量浓度范围。最后通过响应面分析法,得出3种重要影响因子的交互作用及最佳条件。确定米曲霉产AMP脱氨酶的最佳发酵培养基为:葡萄糖3%,蛋白胨2.52%,三水柠檬酸二钠0.4%,MgSO4.7H2O0.04%,微量元素母液4%,吐温-800.16%,在此最佳培养基下发酵酶活可达361.33U/mL,比优化前提高了29.05%。  相似文献   

13.
采用单因素试验和响应面法对黑曲霉(Aspergillus niger)HQ-1产β-葡萄糖苷酶的固体发酵条件进行了优化,得到产酶的最佳发酵条件为:玉米秸秆粉6.0 g、麦麸6.0 g、(NH4)2SO41.5 g、KH2PO41.6 g、MgSO4.7H2O 0.8 g、含水量73.4%、起始pH3.91、培养温度和培养时间分别为33.7℃和96 h。优化后,β-葡萄糖苷酶比活力最高为8.244μkat/g,比未优化的酶比活力最高值(1.700μkat/g)提高了3.85倍。  相似文献   

14.
为了优化米曲霉生物转化血红蛋白(Hb)制备小分子肽的培养基参数,以提高水解度(DH%)为目的,通过单因素试验对Hb发酵培养基中的各组分进行优化,以获得重要的影响因素,应用响应面分析法(简称RSM)研究不同浓度的Hb粉、K_2HPO_4和NaCl对Hb水解度的影响。研究表明,不同浓度Hb粉和NaCl以及Hb粉和K_2HPO_4交互项对水解度有显著影响(P0.05),培养基优化后各组分的浓度(g/L)为葡萄糖10.0、Hb粉7.68、KH_2PO_4·3H_2O 1.94、NaCl 3.87、MgSO_4·7H_2O 0.20,水解度的理论值为33.5%,验证值为34.6%;在此条件下Hb的水解度从培养基优化前的27.8%提高到34.6%。  相似文献   

15.
米曲霉(Aspergillusoryzae)是一种在食品中应用广泛的真菌。为了得到较多的米曲霉孢子,基于单因素试验选取了培养温度、培养基含水量和接种量3个因素,利用Design-Expert响应面分析法对产孢进行了优化。结果表明,在培养温度为22.66℃,培养基含水量为48.79%,接种量为3.44‰时,产孢子数预测可达到12.7437×109CFU/g,实际测得为12.1×109CFU/g,达到预测值的94.95%。  相似文献   

16.
黑曲霉发酵产β-糖苷酶培养基的优化   总被引:2,自引:0,他引:2  
本实验采用黑曲霉发酵产β-糖苷酶.应用单因素实验确定最佳碳源为玉米芯,最佳氮源为酵母粉.然后用Plackett-Burman实验设计,筛选出两个显著影响的因素:玉米芯,酵母粉.再用响应曲面法对主要影响因子进行各因子水平及其交互作用优化与评价,并利用SAS软件对该模型进行求解.当各因素分别为玉米芯21.35g/L ,酵母粉12.5g/L , pH 5.0 ,KH2PO4 2g/L , MgSO4 0.3g/L, CaCl2 0.3g/L,微量元素:FeSO4 5mg/L, MnSO4 1.6mg/L, ZnSO4 1.0mg/L ,发酵液酶活为2.46 U/mL,比原来提高50.92%.  相似文献   

17.
响应面法优化米曲霉酸性蛋白酶的固态发酵培养基   总被引:1,自引:0,他引:1  
采用响应面法对米曲霉酸性蛋白酶的固态发酵培养基进行了优化,首先采用Plackea-Burman设计筛选出了主要影响因素,为麸皮、豆饼粉和KH2PO4,再利用Box-Behnken设计确定了最佳固态发酵培养基配方,当麸皮17.79g,豆饼粉4.53g,KH2PO40.205g,H2O 9.0mL,pH5.5时,理论最佳酸性蛋白酶活力为1032.94U/g,验证试验得到的实际平均酸性蛋白酶活力为1025.54U/g,比初始发酵培养基的酶活力提高了12.6%,验证试验结果与理论值相差0.71%(相对误差<1%),说明该方程与实际情况拟合很好.  相似文献   

18.
黑曲霉产β-葡萄糖苷酶培养基的优化研究   总被引:2,自引:0,他引:2  
利用黑曲(Aspergillus Niger)固态发酵生产β-葡萄糖苷酶,采用单因素实验对发酵培养基进行初步优化。结果表明,麦麸与稻草粉比例为1:1,固体(麸皮稻草粉)与液体(营养液)比例为1:2,营养液pH值是自然值(4.44),氮源为2%硫酸铵,表面活性剂为0.1%吐温80,金属离子为1umol Mn^2+,诱导物为0.1%鼠李糖,此备件下β-葡萄糖苷酶酶活较高。  相似文献   

19.
为提高米曲霉(Aspergillus oryzae)液体发酵生产中性蛋白酶的能力,采用单因素试验、Plackett-Burman(PB)试验筛选碳源、氮源和无机盐,并通过响应面法优化其最佳配比,提高米曲霉液体发酵生产中性蛋白酶的活性。结果表明,米曲霉液体发酵生产中性蛋白酶的最佳碳源、氮源和无机盐分别为玉米粉、牛肉膏和氯化钙,发酵的最优条件为玉米粉添加量17 g/L,牛肉膏添加量10 g/L,氯化钙添加量0.04 g/L,接种量5%,装液量60 mL/250 mL,于30 ℃条件下发酵84 h。在此优化条件下,产生的中性蛋白酶活性从最初的21.4 U/mL提高至110.5 U/mL。  相似文献   

20.
筛选得到的野生米曲霉产高转苷活性β-葡萄糖苷酶,可以通过酶转苷作用合成龙胆低聚糖,通过亚硝基胍和紫外线复合诱变,经过七叶苷平板和发酵测酶活复筛,快速筛选得到一株遗传稳定性好的菌株ALQ1,β-葡萄糖苷酶酶活力达到241.43U/g,较原始菌株提高了88.62%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号