共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:通过实验对γ-聚谷氨酸提取条件进行优化得到一组产量高的最优条件。方法:利用枯草芽孢杆菌通过发酵生产得到含有γ-聚谷氨酸的发酵液,再以异丙醇作为沉淀剂提取发酵液中的产物。通过响应曲面分析方法设计三因素三水平Box-Behnken实验优化提取条件。最后利用薄层色谱和红外光谱对产物进行结构鉴定。结果:利用Design-Expert软件处理数据并优化得到一组最佳提取条件:异丙醇的添加倍数为4.5,沉淀温度为-5℃,沉淀时间为23h。在最优条件下得到γ-聚谷氨酸的产量为0.1796g/10mL,预测精确度达99%。结论:在低温下用异丙醇沉淀发酵液中的产物是一种有效可行的提取γ-聚谷氨酸的方法。 相似文献
2.
《食品与发酵工业》2014,(5):222-228
采用非单一有机溶剂即甲醇-乙醇分步沉淀法从发酵液中提取聚谷氨酸(γ-PGA),通过响应面法对聚谷氨酸(γ-PGA)提取条件进行优化。在初步考察单因素影响的基础上,以BBD(Box-Behnken design)法设计考察有机溶剂沉淀倍数、沉淀pH、沉淀时间3个因素对γ-PGA提取纯度的交互影响,用Design-Expert v8.0.6.1软件对BBD实验数据进行分析处理。试验得到的最佳提取条件为:有机溶剂沉淀倍数为3.48、沉淀pH为8.13、沉淀7.30 h,γ-PGA提取纯度为75.16%,提取率83.77%,预测精准度达99.02%。 相似文献
3.
细菌纤维素/γ-聚谷氨酸复合膜发酵条件的优化 总被引:1,自引:0,他引:1
在发酵培养基中添加γ-聚谷氨酸(γ-PGA),可以制备具有更优性能的细菌纤维素(BC)复合膜.采用响应面分析法优化细菌纤维素/γ-聚谷氨酸复合膜发酵生产工艺,首先通过Plackctt-Burman试验设计对影响复合膜发酵生产的8个因素进行筛选,得到3个关键影响因子:聚谷氨酸添加浓度,pH和γ-聚谷氨酸的添加时间;然后用最陡爬坡试验逼近响应值的最大区域;最后通过Box-Behnken设计及响应曲面分析确定了各考察因子的最佳取值:葡萄糖25g/L,柠檬酸6g/L,Na2HPO42g/L,γ-聚谷氨酸1.04g/L,γ-聚谷氨酸的添加时间4h,发酵初始pH5.0,温度30℃,发酵周期7d.在优化条件下复合膜的湿重达到61.07g/100mL培养基试验值与预测值误差为-3.05%,较初始培养基复合膜产量提高9 1.32%. 相似文献
4.
5.
6.
γ-聚谷氨酸合成菌株的筛选与优化培养 总被引:1,自引:0,他引:1
从土壤筛中筛选分离获得1株γ-聚谷氨酸合成菌Bacillus subtilis PGS-1,在富含谷氨酸和葡萄糖的培养基中可大量合成γ-聚谷氨酸,与大多文献报道的微生物合成的γ-聚谷氨酸相比,具有较低的分子量(300ku~400ku)和较窄的分子量分布,可适用于低分子量要求的医药、化妆品和水处理等应用领域,值得深入开发研究.为提高γ-聚谷氨酸的发酵产量,对Bacillus subtilis PGS-1的摇瓶培养基条件进行了响应面优化,确定了影响γ-PGA合成的显著因素依次为谷氨酸、葡萄糖和(NH4)2SO4;在优化条件下,γ-聚谷氨酸产量达26g/L,较优化前提高了44%. 相似文献
7.
通过响应面法对枯草芽孢杆菌ZJS18发酵生产γ-聚谷氨酸的培养条件进行优化。首先采用Plackett-Burman试验设计筛选出对γ-聚谷氨酸产量有显著影响的3?个关键因素,即蔗糖、酵母粉和谷氨酸钠;然后通过Box-Behnken试验设计和响应面法对这3?个关键因素的用量进行优化。响应面优化后的3?个关键因素的最佳质量浓度为蔗糖64.40?g/L、酵母粉7.10?g/L和谷氨酸钠57.96?g/L。枯草芽孢杆菌ZJS18发酵生产γ-聚谷氨酸的最佳培养条件为蔗糖用量64.40?g/L、酵母粉用量7.10?g/L、谷氨酸钠用量57.96?g/L,氯化钠用量30?g/L,MgSO4用量0.3?g/L、K2HPO4用量2?g/L,初始pH?7.5,接种量5%,装液量40?mL/250?mL,温度37?℃,摇床转速200?r/min,发酵时间36?h。在上述条件下,γ-聚谷氨酸产量为13.20?g/L。与未优化前相比,产量提高了1.88?倍。 相似文献
8.
9.
谷氨酸分析仪测定发酵液中γ-聚谷氨酸的实验条件研究 总被引:1,自引:0,他引:1
研究了pH值和培养基主要组分对谷氨酸分析仪测定谷氨酸含量的影响,确定了γ-聚谷氨酸水解的最佳条件.结果表明,在pH=5~10内,溶液的pH值对谷氨酸分析仪的测定结果没有显著影响;模拟发酵液体系的试验,发酵液中各主要成分含量的变动范围±25%时,对测定结果也没有明显影响.采用正交试验优化了γ-聚谷氨酸的水解条件.以2 mL发酵液为例,其最佳水解条件为4 mL浓度为6 mol/L浓盐酸,真空度为0.1 MPa,110℃,24 h. 相似文献
10.
一株产聚γ-谷氨酸菌株的筛选 总被引:1,自引:0,他引:1
从豆瓣酱等样品中分离获得一株细菌菌株L536,其代谢产物通过紫外扫描分析、纸层析及氨基酸组成分析,确定其为聚谷氨酸,本文报道了聚γ-谷氨酸产生菌株的筛选过程。 相似文献
11.
12.
为提高聚-γ-谷氨酸(poly-γ-glutamic acid,γ-PGA)产量,降低其生产成本,利用枯草芽孢杆菌(Bacillus subtilis),采用单因素试验及正交试验优化法,探究培养基组分及发酵条件对γ-PGA发酵产量的影响。结果表明:最佳培养基组成和培养条件为:蔗糖5%,谷氨酸钠6%,氯化铵0.3%,磷酸氢二钾2%,磷酸二氢钾0.1%,硫酸锰0.003%,p H 7.0,接种量为3%,发酵温度33℃,发酵时间48 h。与未优化前γ-PGA产量(15.8 g/L)相比,经优化后的产量达20.8 g/L,提高了31.65%。 相似文献
13.
利用响应面法优化γ-聚谷氨酸发酵培养基 总被引:2,自引:0,他引:2
利用筛选出的枯草芽孢杆菌发酵生产γ-聚谷氨酸,并对其发酵培养基进行优化。首先采用逐因子试验法寻找出各因素的参考范围。在此基础上,利用Plackett-Burman试验筛选出显著影响γ-PGA产量的3个主要因素:酵母粉、谷氨酸钠和CaCl2。用最陡爬坡试验逼近最大产γ-PGA的区域。然后利用Box-Behnken试验对显著因素进行优化,得酵母粉、谷氨酸钠和CaCl2的最佳浓度分别为4.18g/L、76.89g/L和0.1422g/L。在优化后发酵培养基条件下,γ-PGA的产量达到了43.26g/L,比初始γ-PGA产量提高了1.035倍。 相似文献
14.
15.
16.
为提高微生物发酵生产γ-聚谷氨酸(γ-PGA)的产量,采用枯草芽孢杆菌发酵制备γ-聚谷氨酸,并通过单因子试验及正交试验分析,得到枯草芽孢杆菌发酵生产γ-聚谷氨酸的最佳营养条件为:40g/L葡萄糖、5g/L酵母膏、30g/L谷氨酸钠、3g/L NH4Cl、2g/L K2HPO4、0.25g/L MgSO4:最佳培养条件为:接种量2%,装液量40mL(250ml三角瓶),培养温度37℃,摇床转速200r/min,pH值7.0,发酵时间48h,此时γ-聚谷氨酸的产量最高,达到20.15g/L.纯化后产物经纸层析及红外光谱检测,初步确定为γ-聚谷氨酸. 相似文献
17.
18.
19.
γ-聚谷氨酸的性质与生产方法 总被引:4,自引:0,他引:4
γ-聚谷氨酸(γ-Polyglutamic acid)是由L-谷氨酸(L-Glu)、D-谷氨酸(D—Glu)通过γ-酰胺键结合形成的一种多肽分子,结构式如图1。 相似文献