首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
张超  高丹丹  马越  王丹  赵晓燕  江连洲 《食品工业科技》2012,33(16):324-326,331
明胶-普鲁兰多糖膜是一种可以快速溶解于热水的可食性包装材料,研究环境湿度对明胶-普鲁兰多糖膜机械性能、氧气透过率、水蒸气透过率、油脂透过率、颜色以及水溶性的影响,并比较环境湿度对明胶膜、明胶-普鲁兰多糖膜和普鲁兰多糖膜性能的影响。结果显示,较高的环境湿度(80%)会降低明胶-普鲁兰多糖膜的抗拉强度,提高其柔韧性,而对其阻氧性、阻油性和透明度没有显著的影响;明胶-普鲁兰多糖膜的各方面性能优于明胶膜和普鲁兰多糖膜。  相似文献   

2.
研究环境温度对明胶-普鲁兰多糖膜机械性能、氧气透过率、水蒸气透过率、油脂透过率、颜色和溶水性的影响,并比较温度对明胶膜、明胶-普鲁兰多糖膜和普鲁兰多糖膜的影响。结果表明:环境温度升高提高了明胶-普鲁兰多糖膜的机械性能,而对其阻水性、阻氧性、阻油性和溶水性没有显著的影响,明胶-普鲁兰多糖膜有轻微的黄化。明胶-普鲁兰多糖膜的抗拉强度、阻水性、阻氧性能优于明胶膜和鲁兰多糖膜。  相似文献   

3.
研究温度、湿度等干燥条件和甘油、山梨醇作为增塑剂对海藻酸钠—羧甲基纤维素钠复合膜水蒸气透过率和阻氧性的影响。结果表明:在干燥温度为50℃、湿度为55%时,海藻酸钠—羧甲基纤维素钠复合膜的阻隔性能最佳。山梨醇和甘油的添加使膜的水蒸气透过率增大,阻氧性降低,且山梨醇对膜阻氧性抑制效果比甘油更大。对添加增塑剂的海藻酸钠—羧甲基纤维素钠复合膜进行红外光谱分析发现,小分子醇类增塑剂阻碍了大分子间氢键的形成,破坏了聚合物之间的相互作用,不利于膜形成均匀立体的网状结构,使膜结构变得疏松,改变了膜的阻隔性能。  相似文献   

4.
玉米醇溶蛋白具有较好成膜性,但其形成膜较脆,需通过添加不同增塑剂加以改善;但添加增塑剂会使膜阻隔性能受到影响。该实验以甘油、聚乙二醇(PEG)400、单甘油酯为增塑剂,研究在不同乙醇浓度时制备玉米醇溶蛋白(zein)膜阻湿性及阻油性;结果表明,当乙醇浓度为80%、甘油添加量为0.3 g/g zein,PEG–400添加量为0.2 g/g zein,单甘油酯添加量为0.3 g/g zein时,膜的水蒸汽透过率最小,透油率最大。  相似文献   

5.
以结冷胶为成膜材料,甘油为增塑剂,添加不同比例的茶多酚(1、2、3、4、5 g/L)制成可食用膜以增强抑菌作用。结冷胶-茶多酚复合膜液的静态和动态流变学性质研究发现结冷胶-茶多酚复合膜膜液具有剪切变稀的现象,表观黏度、储能模量G'和损耗模量G″均随着茶多酚浓度的增加而增加。茶多酚的加入可提高复合膜拉伸强度和阻氧性,但降低了复合膜的断裂伸长率,同时也提高了复合膜的阻水性能。与未加茶多酚的结冷胶膜相比,复合膜具有抑制枯草芽孢杆菌、大肠杆菌、产黄青霉和酿酒酵母的性能。研究结果可为食品活性包装膜的研发提供一定的理论依据。  相似文献   

6.
研究干燥温度、甘油含量对海藻酸钠-羧甲基纤维素钠膜性能的影响,以提高膜的阻隔性能。以海藻酸钠、羧甲基纤维素钠为成膜材料,通过改变干燥温度以及改变甘油含量,测定水蒸气透过率、透油系数,分析干燥温度、甘油含量对膜阻隔性能的影响。结果表明:对膜液进行热处理,会造成水蒸气透过率和透油系数的增加,适宜的成膜温度是60℃;增加甘油的含量可提高膜的阻氧性,但是对水蒸气透过率影响不明显,适宜的甘油添加量为3%。该研究改进了海藻酸钠-羧甲基纤维素钠膜的阻隔性。  相似文献   

7.
窦翔 《今日印刷》1994,(5):38-42
常用塑料薄膜的吸水率和水蒸汽透过性 如何?哪些适宜作为防潮包装材料 塑料薄膜的吸水率和水蒸汽透过性见附表1,从表中可看出聚乙烯、聚丙烯、聚偏二氯乙烯薄膜防水性能好,水蒸汽透过率低,适宜作防潮包装材料。聚乙烯醇薄膜和玻璃纸吸水率高,不能作防潮包装使用。  相似文献   

8.
超声波改性马铃薯淀粉可降解性包装膜的制备研究   总被引:2,自引:0,他引:2  
以超声波处理糊化的马铃薯淀粉为成膜原料,添加不同浓度的甘油作为增塑剂,海藻酸钠作为增强剂,通过测定膜的抗拉强度、水蒸汽透过性、CO2透过性,优选超声处理条件45min条件下,马铃薯淀粉浓度为9.0g/100mL,甘油含量为5.0g/100mL,海藻酸钠含量为0.6g/100mL。所制成的马铃薯淀粉膜抗拉强度、水蒸汽透过率、CO2透过率等指标可满足部分替代聚乙烯包装材料的要求。  相似文献   

9.
共混改性对大豆分离蛋白膜物理性能影响的研究   总被引:3,自引:1,他引:3  
主要研究了乙醇、硬脂酸、石蜡、半胱氨酸共混对SPI膜抗拉伸强度、水蒸汽透过系数等物理性能的影响。结果表明,乙醇可缩短成膜时间,提高膜的阻湿性和膜的抗拉强度;硬脂酸和石蜡能明显降低膜的水蒸汽透过系数;添加少量的半胱氨酸可以大大改善蛋白膜的物理性能,特别是在增加SPI膜的抗拉伸强度,降低膜的水蒸汽透过系数方面。硬脂酸-石蜡-半胱氨酸-SPI共混膜展现了非常好的包装材料必须具备的强阻湿性能和强的抗拉伸强度。  相似文献   

10.
壳聚糖成膜特性的研究   总被引:18,自引:2,他引:16  
研究了不同添加剂对壳聚糖膜性能的影响。结果表明:添加甘油后,膜的水蒸汽透过率和透气性提高,抗拉强度下降;添加硬脂酸后,膜的透气性提高,水蒸汽透过率和抗拉强度则下降。  相似文献   

11.
ABSTRACT:  Biopolymer films were developed from apple peels of apple process co-products and their physical properties were determined. Apple peel-based films with glycerol (23%, 33%, and 44%[w/w, dry basis]) were prepared using high-pressure homogenization (HPH) at different levels of pressure (138, 172, and 207 MPa). An evaluation of the rheological properties (elastic modulus [ G '], viscous modulus [ G "], and viscosity) of the film-forming solutions was performed. For the apple peel films, the water sorption isotherms, the kinetics of water absorption, the water vapor permeability (WVP), the oxygen permeability (OP), and the tensile properties were determined. The  G ' and viscosity of the film-forming solutions decreased significantly with increasing processing pressure ( P  < 0.05). However, no difference was observed in  G " values at different homogenization pressures ( P  > 0.05). The viscosity decreased from 644 to 468 kPa·s as the pressure increased from 138 to 207 MPa at 90 °C. The monolayer water content of the apple peel films decreased with increasing content of glycerol from 23% to 33%. Further increase in glycerol content did not change the monolayer water content. The water diffusion coefficient of the films was highest at the intermediate level of glycerol content. The barrier properties (WVP and OP) of the films increased with increasing level of glycerol, while processing pressure did not influence the gas barrier properties. The films prepared at 207 MPa were less stiff and strong, but more stretchable than those prepared at 138 and 172 MPa.  相似文献   

12.
Gelatin film from blue shark (Prionace glauca) skin was investigated in order to utilize what is one of the most serious marine wastes in Japan. Film properties from shark skin such as tensile strength (TS), elongation at break (EAB) were evaluated. The TS of gelatin film from shark skin was affected by the protein concentration (1, 2 and 3%) of the film-forming solution (FFS). TS of the film from a 2% protein FFS was the highest. EAB and water vapor permeability (WVP) increased with increasing FFS protein concentration. WVP of shark skin gelatin was evidently low as compared to gelatin films from other fish. An increase in the FFS protein concentration decreased transparency at almost all wavelengths. Furthermore, opacity at 280 nm was characteristically high as compared to films from bony fish skin. The addition of glycerol improved flexibility and enhanced the UV barrier property at 280 nm. However, transparency at the visible range and WVP increased with increasing glycerol content.From the above, it was suggested that shark skin gelatin film technology can be applied to pharmaceutical products or rich-fat food due to its excellent water and UV barrier properties.  相似文献   

13.
Beef gelatin, in combination with varying levels of glycerol, was used to manufacture films by extrusion. A twin-screw co-rotating extruder was employed to produce the films and the mechanical and barrier properties of the films were investigated. Increasing the plasticizer content increased (P < 0.05) elongation at break (EAB) values but decreased (P < 0.05) tensile strength (TS) values. Oxygen permeability (OP) values for gelatin-based composite films increased (P < 0.05) as the concentration of glycerol increased. Additionally, the solubility of films in water and seal strength increased as glycerol content increased. FTIR results indicated that increasing glycerol concentration increased and displaced the peak situated around 1032 cm−1, which corresponded to glycerol. Gelatin-based composite films with a concentration of 0.2% glycerol possessed the lowest water vapor permeability (WVP) and OP values. From the data generated in this study, it is clear that the use of a plasticizing agent in film formulations should be carefully considered because of the negative effects that the plasticizing agent could have on extruded film barrier properties.  相似文献   

14.
Tensile strength (TS), percent elongation (%E), oxygen permeability (OP), and water vapor permeability (WVP) of lactic acid and rennet precipitated casein-based edible films were studied to determine the effect of protein to plasticizer ratio (0.6:1, 1:1, 1.4:1) and plasticizer type (sorbitol, glycerol) on these properties. TS increased (p<0.05) with increase in protein to plasticizer ratio. Sorbitol plasticized films were stronger (p<0.05) than glycerol plasticized films. However, films plasticized with glycerol were more extensible (p<0.05). Film %E decreased with increase in protein/plasticizer ratio for lactic acid casein films, whereas it increased for rennet casein films. Films plasticized with sorbitol were more effective (p<0.05) moisture and oxygen barriers than glycerol plasticized films. Overall, lactic acid casein films plasticized with sorbitol had the most effective mechanical and barrier properties.  相似文献   

15.
Edible films were prepared from whey protein isolate (WPI), and characterized in order to select a best combination of protein concentration and glycerol (Gly) ratio. 5%, 7% and 9% (w/v) WPI were used at three WPI:Gly ratios (3.6:1; 3:1; and 2:1). 5% WPI with a 3.6:1 WPI:Gly ratio showed the best combination with factors considered being thickness and water vapor permeability (WVP), while the 9% WPI with 3.6:1 WPI:Gly showed the best result as seen from the oxygen permeability (OP). Further studies were conducted by adding pullulan (PUL) at different WPI:PUL ratios (1:0; 1:1; 2:1; 3:1; 4:1; 5:1; 6:1; 8:1; 10:1) to a selected film in order to investigate the effect of pullulan on thickness, OP, WVP, moisture content (MC), film solubility (FS) and morphology using scanning electron microscopy (SEM). WPI–PUL film had a good appearance and 1:1 WPI:PUL resulted in films with greatest values of OP, WVP, MC, FS, and transmittance. The SEM micrographs showed many pinholes and a favorable structure for the low barrier ability. However, addition of PUL at low concentration was good enough to significantly modify these properties, hence improving the potential characteristics of WPI-based films for food applications.  相似文献   

16.
乳清浓缩蛋白可食用膜成膜工艺的研究   总被引:5,自引:0,他引:5  
研究了乳清浓缩蛋白可食用膜的成膜工艺,分析了蛋白质浓度、甘油浓度和加热温度对可食用膜透水性和透氧性的影响,并确定了可食用膜阻隔性能的优化工艺参数。研究结果表明,可食用膜的阻水性随蛋白质浓度和甘油浓度的增大而下降,阻氧性随甘油浓度增大而下降。加热温度为70℃时,膜的阻水性和阻氧性达到最佳。响应面分析表明,当蛋白质浓度为100 g/L,甘油浓度为27 g/L,加热温度为69℃时,乳清浓缩蛋白可食用膜的综合通透性能为最佳,其透湿系数为0.004 35 g·mm/(m~2·h·kPa),透氧系数为0.134 cm~3·mm/(m~2·min·kPa)。  相似文献   

17.
Permeability and Mechanical Properties of Cellulose-Based Edible Films   总被引:1,自引:0,他引:1  
Factors affecting barrier properties [oxygen permeability (OP) and water vapor permeability (WVP)] and mechanical properties [tensile strength (TS) and elongation (E)] were investigated for methyl cellulose (MC) and hydroxypropyl cellulose (HPC) films. OP, WVP and TS of MC and HPC films increased as the molecular weight (MW) of the cellulose increased. E of MC films increased as MW increased, but E of HPC films was highest for the intermediate MW of 370,000. OP, WVP and TS of MC films were not a function of thickness, but E slowly increased as film thickness increased. OP and WVP of HPC films were not relatable to film thickness, but TS and E of HPC films slowly increased as film thickness increased. TS decreased and E increased for both film types as concentration of plasticizers was increased. Plasticizers enhanced or retarded OP and WVP of cellulose-based films, depending on their concentrations.  相似文献   

18.
淀粉成膜性和疏水性对表面施胶包装纸的影响   总被引:1,自引:0,他引:1  
本文研究了添加甘油对疏水改性木薯淀粉膜力学性能及阻隔性能的影响,甘油的添加降低了疏水改性淀粉膜的玻璃转化温度、储能模量及水蒸气透过量.当温度低于临界温度上限时,疏水改性淀粉将会出现固态及液态两种形式.热的淀粉溶液中加入适量的甘油可以抑制淀粉微粒的沉淀.与羟丙基淀粉相比,疏水改性淀粉中添加不同量的甘油并涂覆干基材表面,对基材的阻隔性、水蒸气透过量、接触角及可勃吸水值均有一定影响.从表面施胶基材的可勃吸水值和水蒸气透过量的变化上可以看出,淀粉的成膜性对基材的性能有非常重要的影响.良好的成膜性可以改善基材的阻气、阻湿性,而对基材表面润湿性的影响不大.随着甘油含量的逐渐增加,基材的水蒸气透过量不断减少;但仍无法得到较好的阻湿性能.本文中所用的疏水改性淀粉具有较好的氧气阻隔性能和接触角,因此,表面施胶后的基材具有较好的疏水特性.同时在实验条件下研究了淀粉沉淀对基材性能的影响,利用淀粉沉淀对基材表面进行施胶后即使淀粉成膜性较差,也可以得到较低的水蒸气透过量和较高的接触角.通过增加疏水改性淀粉中甘油的含量,表面施胶基材的可勃吸水值可以得到显著改善.  相似文献   

19.
BACKGROUND: A hot‐buffer‐soluble‐solid fraction (HBSS) and an alkaline‐soluble‐solid fraction (ASS) of okra polysaccharides (OKP) were obtained using sequential extraction. These fractions were combined with whey protein isolate (WPI) and glycerol (Gly) plasticizer to form blend edible films. Effects of OKP fraction and content on tensile properties, water vapor permeability (WVP) and oxygen permeability (OP) were determined. RESULTS: HBSS film had significantly higher percent elongation (%E) and lower elastic modulus (EM), WVP and OP than ASS film. Increasing HBSS or ASS content in blend films with WPI significantly reduced film tensile strength and EM and increased film %E and WVP. OP values for WPI–HBSS blend films were significantly lower than OP for WPI or HBSS film. WPI–HBSS and WPI–ASS blend films had lower WVP and OP than WPI films with equivalent tensile properties. CONCLUSIONS: WPI–HBSS blend films have higher WVP and lower OP than WPI film or HBSS film, indicating unique interactions between WPI and HBSS. Compared to WPI film, WPI–HBSS blend films have improved flexibility, stretchability and oxygen barrier. Different HBSS and ASS compositions and structures are responsible for property differences between HBSS and ASS films and between WPI–HBSS and WPI–ASS blend films. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
Water solubility, hermal properties, tensile strength, percent elongation, oxygen permeability (OP), water‐vapor permeability (WVP) of cross‐linked glycerol plasticized whey protein isolate films were studied to determine the effect of cross‐linkers (glutaraldehyde, formaldehyde, dialdehyde starch, carbonyldiimidazole, and UV irradiation) on film properties. With the exception of UV treatment, solubility of the films decreased (P>0.05) upon treatment of the film‐forming solutions with chemical cross‐linkers. Tensile strength increased (P>0.05), whereas percent elongation was not affected by cross‐linking. Chemical cross‐linking increased (P>0.05) WVP and decreased (P>0.05) OP of the films. UV treatment had no effect on WVP and O P. With the exception of UV‐treated films, both onset temperature and degradation temperatures, as determined by differential scanning calorimetry, were increased upon cross‐linking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号