首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Optical microscopy allows a magnified view of the sample while decreasing the depth of focus. Although the acquired images from limited depth of field have both blurred and focused regions, they can provide depth information. The technique to estimate the depth and 3D shape of an object from the images of the same sample obtained at different focus settings is called shape from focus (SFF). In SFF, the measure of focus–sharpness–is the crucial part for final 3D shape estimation. The conventional methods compute sharpness by applying focus measure operator on each 2D image frame of the image sequence. However, such methods do not reflect the accurate focus levels in an image because the focus levels for curved objects require information from neighboring pixels in the adjacent frames too. To address this issue, we propose a new method based on focus adjustment which takes the values of the neighboring pixels from the adjacent image frames that have approximately the same initial depth as of the center pixel and then it re-adjusts the center value accordingly. Experiments were conducted on synthetic and microscopic objects, and the results show that the proposed technique generates better shape and takes less computation time in comparison with previous SFF methods based on focused image surface (FIS) and dynamic programming. Microsc. Res. Tech., 2009. © 2008 Wiley-Liss, Inc.  相似文献   

2.
  总被引:1,自引:0,他引:1  
This article introduces a new algorithm for shape from focus (SFF) based on discrete cosine transform (DCT) and principal component analysis (PCA). DCT is applied on a small 3D neighborhood for each pixel in the image volume. Instead of summing all focus values in a window, AC parts of DCT are collected and then PCA is applied to transform this data into eigenspace. The first feature, containing maximum variation is employed to compute the depth. DCT and PCA are computationally intensive; however, the reduced data elements and algorithm iterations have made the new approach competitive and efficient. The performance of the proposed approach is compared with other methods by conducting experiments using image sequences of a synthetic and two microscopic objects. The evaluation is gauged on the basis of unimodality, monotonicity, and resolution of the focus curve. Two other global statistical metrics, root mean square error (RMSE) and correlation have also been applied for synthetic image sequence. Besides, noise sensitivity and computational complexity are also compared with other algorithms. Experimental results demonstrate the effectiveness and the robustness of the new method.  相似文献   

3.
    
Generally, shape from focus methods use a single focus measure to compute focus quality and to obtain an initial depth map of an object. However, different focus measures perform differently in diverse conditions. Therefore, it is hard to get accurate 3D shape based on a single focus measure. In this article, we propose a total variation based method for recovering 3D shape of an object by combining multiple depth hypothesis obtained through different focus measures. Improved performance of the proposed method is evaluated by conducting several experiments using images of synthetic and real microscopic objects. Comparative analysis demonstrates the effectiveness of the proposed approach. Microsc. Res. Tech. 76:877–881, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
本文将单摄像机与三坐标测量机结合设计了一种自由曲面的三维坐标测量方法.自由曲面的表面经坐标测量机带动摄像机序列采集图像后形成图像体积,然后使用调焦评价函数在图像体积内寻优判断,找到自由曲面的正焦图像表面.根据物像关系式和正焦图像表面即可推得自由曲面点的三维坐标.经实验比较,本系统测量结果与接触式坐标测量机测量曲面点Z坐标极限偏差13 μm.  相似文献   

5.
    
Generally, in shape from focus techniques, a single focus measure is used in estimating the three‐dimensional structure of microscopic objects. However, the performance of a single focus measure is limited to estimate accurately the depth map of diverse type of objects. To cope with this problem, we propose genetic programming based novel approach by developing an optimal composite depth (OCD) function for accurate depth estimation. This OCD function optimally combines the initial depth and focus information extracted from individual focus measures. An improved performance of this function is reported for synthetic and real world microscopic objects. Microsc. Res. Tech., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
    
In this article, we introduce a novel shape from focus method to compute 3D shape of microscopic objects, based on modified‐pixel intensities and Bezier surface approximations. A new and simple but effective focus measure is proposed. In our focus measure, the original intensities of a sequence of small neighborhood are modified by subtracting the maximum of the values of first and last frames. An initial depth map is calculated by finding the maximum of the pixel's focused energy and its corresponding frame number. Missing information between two consecutive frames, false depth detection, and enhancement of noise related intensities may provide inaccurate depth map. To overcome these problems and to produce an accurate depth map, we proposed Bezier surface approximation. The proposed method is tested using synthetic and real image sequences. The comparative analysis demonstrates the effectiveness of the proposed method. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
    
In nature, objects have partially weak texture and their shape reconstruction using focus based passive methods like shape from focus (SFF), is difficult. This article presents a new SFF algorithm which can compute precise depth of dense as well as weak textured objects. Segmentation is applied to discard wrong depth estimate and then later interpolating them from accurate depth values of their neighbors. The performance of the proposed method is tested, using different image sequences of synthetic and real objects, with varying textures. Microsc. Res. Tech., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
    
Shape from focus (SFF) is a technique to recover the shape of an object from multiple images taken at various focus settings. Most of conventional SFF techniques compute focus value of a pixel by applying one of focus measure operators on neighboring pixels on the same image frame. However, in the optics with limited depth of field, neighboring pixels of an image have different degree of focus for curved objects, thus the computed focus value does not reflect the accurate focus level of the pixel. Ideally, an accurate focus value of a pixel needs to be measured from the neighboring pixels lying on tangential plane of the pixel in image space. In this article, a tangential plane on each pixel location (i, j) in image sensor is searched by selecting one of five candidate planes based on the assumption that the maximum variance of focus values along the optical axis is achieved from the neighborhood lying on tangential plane of the pixel (i, j). Then, a focus measure operator is applied on neighboring pixels lying on the searched plane. The experimental results on both the synthetic and real microscopic objects show the proposed method produces more accurate three-dimensional shape in comparison to conventional SFF method that applies focus measures on original image planes.  相似文献   

9.
    
In this letter, a shape from focus (SFF) method is proposed that utilizes the guided image filtering to enhance the image focus volume efficiently. First, image focus volume is computed using a conventional focus measure. Then each layer of image focus volume is filtered using guided filtering. In this work, the all‐in‐focus image, which can be obtained from the initial focus volume, is used as guidance image. Finally, improved depth map is obtained from the filtered image focus volume by maximizing the focus measure along the optical axis. The proposed SFF method is efficient and provides better depth maps. The improved performance is highlighted by conducting several experiments using image sequences of simulated and real microscopic objects. The comparative analysis demonstrates the effectiveness of the proposed SFF method. Microsc. Res. Tech. 77:959–963, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
聚焦深度法广泛地应用于小尺寸零构件的三维形貌测量。 针对聚焦评价曲线多存在噪声导致三维形貌测量的精度下降,且效率受图像序列数目和聚焦评价算法限制的难题,通过结合双拟合优化理论与聚焦单峰性评价指标提出了一种基于自适应权重的聚焦极值搜寻方法,并进一步基于三次多项式二次插值算法和多级中值混合滤波优化深度信息。 实验结果表明,方法对仿真图像数据的均方根误差(RMSE)较高斯拟合和多项式拟合分别降低了 19. 08% 、17. 32% , 对球栅阵列封装 (BGA) 图像中受噪声干扰较大的区域仍具三维分辨能力,同时对钻削刀具进行了测量,提出的方法在 50% 的图像序列数目和图像分辨下RMSE 仍降低了 77. 8% 、62. 6% ,有效减少了聚焦曲线噪声对测量结果影响的同时提升了三维测量的效率。  相似文献   

11.
    
Shape from focus (SFF) is a widely used passive optical method for 3D shape reconstruction. In SFF, a focus measure, which is used to estimate the relative focus level, plays a critical role in depth estimation. In this article, we present a new focus measure for accurate 3D shape estimation in optical microscopy based on the analysis of 3D structure tensor. First, the 3D tensors are computed from the input image sequence for each pixel. Then, each tensor is decomposed into point, curve, and surface tensors by decomposing tensors into eigenvalues and eigenvectors. Finally, the surfaceness is used to measure the quality of sharpness. The proposed focus measure provides accurate focus values and better resistance against noise. The proposed measure is evaluated by conducting experiments using image sequences of simulated and microscopic real objects. The comparative analysis demonstrates the effectiveness of the proposed focus measure in recovering 3D shape.  相似文献   

12.
13.
    
N Tian  L Zhang  B Liu  P Wang  Y Li  W Ma 《Journal of microscopy》2012,247(3):252-258
This paper made a different attempt of real-time observation of the meiotic spindle movements in living mouse oocyte using a convenient method. This method was based on an experimental phenomenon discovered in our work. In living mouse oocytes, a high concentration of calcium ions (Ca(2+) ) was observed throughout the region occupied by the initial meiotic spindle. After Ca(2+) labelling with Fura-2, a weakly fluorescent area (WFA) appeared on each side of the chromosomes. The activities of the WFAs changed during spindle development. By real-time tracking of WFAs, we were able to indirectly observe the meiotic spindle movements. Occasionally, it was observed that the first meiotic spindle rotated from an orientation parallel to the cortex to become perpendicular, instead of migrating from the oocyte centre to the cortex along its axis. Moreover, we analysed this uncommon rotation of the first meiotic spindle and found that the whole rotation process can be divided into two phases: the early slow-speed rotation and the subsequent rapid-speed rotation. We further characterized this rotation with respect to rotational speed and acceleration at all the stages of development. By using a two-photon laser-scanning microscope in combination with Fura-2 dye that is nondamaging to oocytes, we provide a convenient method for indirect visualization and quantitative analysis of spindle movements by real-time tracking of WFAs. This method is easy to operate and master, and economical with time and effort.  相似文献   

14.
谭啸峰  沈海斌 《机电工程》2011,28(8):965-969
为了将空间手写识别回归为平面手写识别问题,提出了一种新型的空间手写识别平面化预处理技术,采用基于主元分析(PCA)的投影算法对空间手写字符轨迹进行了平面化处理。该算法中,投影平面的确定仅依赖于手写字符轨迹采样点集本身的统计特征,故当书写角度发生变化时,投影平面也会随之产生适应性变化,以产生最佳的投影效果;最后在实验中,对比了指定初始平面投影法和主元分析投影法在不同书写角度下的投影效果,实验结果直观地证明了该投影算法的有效性。  相似文献   

15.
郭便  魏宏波 《工具技术》2011,45(6):98-102
研究了采用明暗恢复形状法(SFS)对加工表面显微视觉图像的三维形貌重构,并实现了表面粗糙度检测.根据金属表面反射特性,采用简化的Oren-Nayar模型与Torrance-Sparrow模型中镜面反射分量叠加的方法,对光照模型进行了改进,并讨论了基于改进后光照模型的SFS最小化计算方法.利用该算法,实现了真实工件表面微...  相似文献   

16.
考虑大尺度噪声对测量矩阵的影响,提出了一种基于多摄像机的鲁棒运动结构重建方法.通过引入一种用于低秩矩阵恢复的数学模型,将丢失数据和大尺度噪声造成的不完整测量矩阵求解转化为凸优化问题,并使用鲁棒主成分分析方法对其求解,利用多摄像机下的矩阵分解理论实现多摄像机下运动结构重建.实验结果表明,提出的方法能够有效解决大尺度噪声的存在造成多摄像机运动结构重建方法失效的问题,准确地重建物体三维结构.  相似文献   

17.
一种基于DFD的自动对焦算法   总被引:2,自引:1,他引:1  
引入了一种基于DFD的自动对焦算法。通过这种算法,只要给定了两幅不同离焦位置的图像,就可由算法推导出目标物体的正确对焦位置,从而控制镜头完成自动对焦。实验表明,这种算法精度比较高,速度比较快,鲁棒性良好。  相似文献   

18.
刘乾  袁道成  刘波  曾续武 《工具技术》2009,43(11):107-110
提出了探针扫描和深度聚焦的两种方法,实现了使用二维视觉测头对Z向的测量。两种方法均基于自动聚焦原理。对采集到的图像去噪和聚焦曲线平滑后,使用峰值附近点进行高斯函数拟合,寻找准焦点。根据得到的XYZ向的数据实现三维重构。与接触式测量相比,本文方法Z向测量的最大偏差不到6μm。  相似文献   

19.
对基于核熵成分分析的光谱反射率重建方法进行了研究,分别采用主成分分析方法和核主成分分析方法构建光谱反射率重建算法进行颜色重建研究,并与基于核熵成分分析算法的光谱反射率进行比较。实验结果表明,基于核熵成分分析的光谱重建算法在色度精度和光谱精度上均优于主成分分析和核主成分分析,对物体表面颜色的真实重建具有一定的应用价值。  相似文献   

20.
龚俊锋 《工具技术》2010,44(10):106-109
聚焦融合法能够提取出砂轮表面的高度信息,但是由于聚焦融合方法易受图像高频信息干扰,难以重构出符合实际形貌的三维表面。本文提出先将由聚焦融合得到的初始曲面变换到更高一维的坐标系中,用水平集来进行表示。并采用Min/Max曲率流来构造变形曲面的弹性力,使用数值解法求解曲面演化偏微分方程,从而使初始曲面演化到更符合砂轮实际情况的三维曲面,实验结果证明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号