首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了考察硫磺/石灰石自养反硝化系统的脱氮性能,并探究系统N_2O的产生和排放规律,采用均匀填充的上流式硫磺/石灰石生物滤池反应器,研究了2组HRT下,不同进水NO_3~--N浓度对系统脱氮效果的影响及N_2O的排放规律。结果表明,进水NO_3~--N浓度为(54.46±1.15)mg/L、HRT为2.5 h时,反应器容积负荷最大且对NO_3~--N去除率最高,可达99.93%,系统无NO_2~--N累积,出水N_2O低于0.86 mg/L;另外,研究发现NO_3~--N浓度随反应器高度增加而逐渐降低,N_2O浓度随着反应器下部NO_2~--N的富集逐渐增加,并随上部NO_2~--N的还原而逐渐减小;进水NO_3~--N浓度增大,N_2O累积量峰值点沿反应器高度逐渐上移,因此该系统仅能处理较低浓度NO_3~--N废水。  相似文献   

2.
在序批式活性污泥法反应器(SBR)中,采用全程自养脱氮(CANON)工艺,先以反硝化污泥为接种污泥,采用低基质含量配水通过逐步降低进水C/N及水力停留时间的策略快速富集厌氧氨氧化菌(anammox),之后在低曝气条件下进一步缩短HRT以模拟生活污水富集氨氧化细菌(AOB),基于对反应器内脱氮性能和不同阶段功能菌动力学活性的分析,系统阐述了功能菌演化的关键因素。结果表明,CANON工艺在75 d内成功启动,反应器氨氮去除率超过了93%;将该工艺应用于生活污水的处理,实现了高效的脱氮性能,反应器内anammox对NH_4~+-N降解速率μ(NH_4~+-N)与异养菌对COD的降解速率μ(COD)的比大于1.0,与反硝化菌的NO_3~--N降解速率μ(NO_3~--N))比大于2.0。  相似文献   

3.
以市政污水为底物,建立人工湿地进行硫自养反硝化研究,考察了硫源、硫灰比、微生物密度、温度和NO_3~--N含量对系统运行性能的影响。结果表明,Na_2S_2O_3作为硫源自养反硝化效率最高,NO_3~--N去除率为90.9%;在优化硫灰质量比2:1下,系统NO_3~--N去除率为91.6%;在10×10~3~100×10~6 cell/mL内,微生物密度的提高能够促进人工湿地对NO_3~--N去除性能;30℃为硫自养反硝化的适宜温度,过低的温度会严重抑制反硝化效率;过高的NO_3~--N含量会导致ρ(Na_2S_2O_3)/ρ(NO_3--N)较低,从而抑制硫自养反硝化效率。  相似文献   

4.
为进一步提高反硝化(DN)池的反硝化效能,分别考察了进水温度、HRT、C/N以及反洗周期等因素对前置反硝化曝气生物滤池(BAF)组合工艺DN池的脱氮效能的影响。结果表明,反硝化效能会随温度的升高而升高,在25℃时NO_3~--N去除率为91.3%;水力停留时间对反硝化作用的影响主要原于HRT的减少缩短了反硝化作用的反应时间,从而使反硝化过程中所消耗的COD降低;COD/ρ(NO_3~--N)小于15时,COD/ρ(NO_3~--N)是DN池脱氮效能的决定性因素,当COD/ρ(NO_3~--N)大于15时,NO_3~--N的含量变化趋于平缓;同一反洗周期内DN池的反硝化效能会持续增加,下一反洗周期开始前NO_3~--N的质量浓度降低至1.9 mg/L,此时脱氮效能达到最大。  相似文献   

5.
《水处理技术》2021,47(9):23-26
为了探究葡萄糖作为补充碳源对反硝化规律的影响,建立序批式反应器(SBR),考察了不同乙酸与葡萄糖混合比对氨氮氧化及亚硝酸盐积累的影响。结果表明乙酸与葡萄糖混合比及污泥负荷均能影响反硝化规律。当碳源充足时,碳源类型对硝化过程影响不显著,而对反硝化过程具有显著影响。当ρ(乙酸)/ρ(葡萄糖)为2/1时,反硝化速率快,且ρ(NO_2~--N)的最大积累量为2.24 mg/L。在污泥负荷为1 000 mg/L时,各反应器中硝态氮均能被反硝化,但ρ(乙酸)/ρ(葡萄糖)为1/2组别中反硝化速率最慢,ρ(NO_2~--N)积累量最小。NO_3~--N的存在对NO_2~-N的还原具有一定抑制作用。  相似文献   

6.
研究了竹丝/陶粒混合载体(体积比1∶1)生物膜反应器的水质净化特性和微生物群落特点。结果表明:混合载体生物膜反应器对污水TN、TP和COD的去除率分别为24.7%~89.4%、56.9%~96.8%和70.1%~95.8%,出水NO_3~--N、NO_2~--N没有出现积累,具有明显的同步硝化反硝化现象。另外,微生物种群特性研究表明,竹丝表面以有机物降解菌、有机物水解菌、脱氮菌、解磷菌等为优势菌,而陶粒表面以有机物降解菌、有机物水解菌、硝化菌、丝状菌等为优势菌,微生物种群具有良好的强化互补作用。  相似文献   

7.
《水处理技术》2021,47(6):88-92
针对低C/N废水脱氮效率低的现状,建立了微曝气生物膜反应器,分析了启动期微气泡曝气生物膜反应器污染物去除特征,探究了温度对微气泡曝气生物膜反应器脱氮效率的影响并揭示相关机制。结果表明,反应器启动稳定后COD、NH_4~+-N和TN的去除率分别提高至92.3%、92.5%和71.5%。温度能影响生物脱氮效率,且35℃时COD去除率最高,可高达92.3%~93.4%。温度同时影响硝化及反硝化过程,且温度升高有利于促进NO_2~--N的积累与NO_3~--N的反硝化。温度升高降低了反应器内污泥胞外聚合物的含量。当温度为35℃时,脱氮过程关键酶活性显著高于15℃;温度升高利于硝化及反硝化过程关键微生物的丰度。  相似文献   

8.
建立2个反应器(R0、R1)培养好氧颗粒污泥,并通过向R1投加生物质炭促进颗粒污泥的形成。结果表明:投加1.5 g/L的生物质炭可加速颗粒化进程,在第11天形成以生物质炭作为晶核的颗粒污泥;与R0相比,R1中的颗粒污泥结构更致密、表面更光滑。然而生物质炭的投加对反应器性能无明显影响:2个反应器的COD和总氮去除率都可达到95%和65%以上;在一个反应周期内反应器中均无NO_3~--N和NO_2~--N积累,表明2个反应器均实现了同步硝化反硝化脱氮。  相似文献   

9.
针对废水处理过程中反硝化阶段碳源不足需要外加有机物的情况,通过驯化培养以Fe~(2+)为电子供体的硝酸盐型厌氧铁氧化菌(NAIOM),接种至普通反硝化污泥中(ASBR反应器),研究了NAIOM污泥及外加Fe~(2+)对反硝化脱氮效果的提升。结果表明:反应器在接种NAIOM污泥和投加Fe~(2+)后,碳氮比较高时NO_3~--N去除率变化不大,随着碳氮比的不断降低NO_3~--N去除率提升逐渐明显,在碳氮比为3.42、 2.28、 1.71时分别为90.20%、85.12%、 78.86%,较普通反硝化污泥不投加Fe~(2+)时的NO_3~--N去除率分别提升了17.80%、 24.59%、 28.70%,接种NAIOM污泥协同外加Fe~(2+)对提高低碳氮比废水的NO_3~--N去除率效果显著。  相似文献   

10.
分别采用零价铁、反硝化污泥及零价铁+反硝化污泥的系统处理含NO_3~--N的废水,探讨零价铁的添加对反硝化系统脱氮效果的影响及系统中发生的主要反应。结果表明,零价铁系统对废水中的NO_3~--N无去除效果;当零价铁+反硝化污泥系统对废水中NO_3~--N的去除率达到100%时,反硝化污泥系统对废水中的NO_3~--N去除率仅为60.1%。零价铁+反硝化污泥系统中主要发生零价铁参与的氧化还原反应及微生物参与的生物反硝化反应。  相似文献   

11.
以完全自养亚硝化颗粒污泥为对象,控制进水NH_4~+-N的质量浓度为80 mg/L,以乙酸钠为碳源,改变进水COD/ρ(TN),考察有机物添加对亚硝化颗粒污泥NH_4~+-N降解性能、产物组分的影响,系统阐述了进水COD/ρ(TN)对亚硝化颗粒污泥性能、不同氮形态变化规律和产物中ρ(NO_2~--N)/ρ(NH_4~+-N)的影响。结果表明,随着COD/ρ(TN)提高,运行周期数增加,NH_4~+-N降解速率下降,NO_2~--N比生成速率和NO_3~--N比生成速率下降,且NO_3~--N比生成速率受抑制更加显著,改变了产物中NO_3~--N和NO_2~--N的组分,导致对亚硝酸盐累积率反而有提高,产物中ρ(NO_2~--N)/ρ(NH_4~+-N)保持在1.0~1.3内的持续时间增加,有利于为后续厌氧氨氧化脱氮提供良好的基质条件。  相似文献   

12.
在SBR反应器中以乙酸钠为碳源、NO_3~--N为电子受体成功富集了反硝化聚糖菌,并采用批次实验进一步考察了进水C/N比(3.3,6.7,10)、电子受体(NO_3~--N、NO_2~--N)、碳源类型(乙酸钠、葡萄糖)对反硝化聚糖菌活性的影响及内碳源转化特性。实验结果表明,进水C/N比越高,系统NO_x~--N去除率越高,厌氧段合成PHB越多,但进水C/N比过高会导致普通反硝化菌占优势,影响内碳源反硝化效率,进水C/N比为6.7较为合适;以NO_3~--N为电子受体长期培养的DGAOs系统未经NO_2~--N驯化,对NO_2~--N同样具有良好的反硝化性能,在投加与NO_3~--N相同浓度的NO_2~--N后,系统NO_x~--N去除率达89.6%;当以葡萄糖为碳源时,DPAOs在厌氧段合成的PHB的量仅为以乙酸钠为碳源时合成PHB量的79.5%,且厌氧段葡萄糖利用率仅为72.8%,远远小于乙酸钠的利用率。  相似文献   

13.
循环水养殖系统中反硝化技术研究进展   总被引:1,自引:0,他引:1  
介绍了循环水养殖系统及其系统中NO_3~--N的产生及危害,叙述了自养和异养反硝化脱氮技术的原理,并总结了2种类型反硝化技术去除NO_3~--N的影响因素以及工艺。认为随着分子生物学的发展,菌体的群落变化、代谢过程以及氮的来源和去向会更加明晰,新型反硝化细菌如好氧反硝化菌将被发现。如果可以在同一个反应器内实现硝化反硝化,不仅可以简化反应器程序,而且降低RAS系统运行成本,是未来反硝化在养殖水体脱氮处理中的一个重要方向。  相似文献   

14.
以乙酸钠和丙酸钠为外加碳源,考察了碳源种类和碳氮比对多级AO工艺(分别为反应器SBR-A和SBR-P)脱氮性能及其N_2O释放的影响。结果表明,在进水COD为200 mg/L时,SBR-A和SBR-P氮去除率分别为66.7%和67.1%,磷去除率分别为51.1%和28.9%。硝化过程中,SBR-A中NH4+-N氧化速度和NO_3~--N生成速度都比SBR-P高,SBR-A中NO_2~--N和N_2O积累速度比SBR-P低。2组反应器硝化过程中N_2O释放因子均小于0.23%。在反硝化过程中,SBR-A的反硝化速度高于SBR-P,N_2O释放因子均较低;存在同时释磷时,对SBR-A的反硝化速度影响较小,而对SBR-P反硝化活性影响较大,后者反硝化速度明显低于无释磷条件下的反硝化速度;菌群均以变形菌门和拟杆菌门为主,且以陶厄氏菌属、脱氯单胞菌属、蛭弧菌属和硝化螺菌属等为主要功能菌。  相似文献   

15.
以自制复合铁碳填料为载体,建立物化-生物耦合脱氮体系,考察了HRT、DO含量、进水pH对低C/N(COD/ρ(TN)=1.5:1)污水脱氮的影响,并通定量了物化作用对脱氮的贡献率。结果表明,在耦合体系中,NH_4~+-N通过氨氧化菌和硝化菌的作用生成NO_3~--N和NO_2~--N,NO_3~--N和NO_2~--N进入生物膜内部,自养反硝化菌以载体原电池反应所产生的[Fe~(2+)]、[H]为电子供体实现反硝化脱氮,其适宜运行条件为:HRT为4.0 h,DO的质量浓度(2.0±0.1)mg/L,进水pH为7.0±0.1,此时污水COD、NH_4~+-N、NO_3~--N、TN去除率分别可达94.6%~97.3%、82.1%~83.6%、92.1%~94.7%、89.3%~92.5%。适宜的HRT低于其它同步硝化反硝化脱氮过程。反应器内反硝化所需电子37.9%由载体物化反应供给,消除了传统生物脱氮过程对有机碳源的依赖,源缩短了脱氮所需停留时间。故该耦合体系可实现低C/N污水的高效深度脱氮。  相似文献   

16.
在厌氧-好氧交替运行的序批式反应器(sequencing batch reactor, SBR)中,以C/P比大于50的实际生活污水为进水,成功驯化富集聚磷菌,平均厌氧释磷量为15 mg·L~(-1),出水PO_4~(3-)-P浓度稳定小于0.5 mg·L~(-1)。在系统运行的第74 d调整运行模式为厌氧-缺氧-好氧,在缺氧开始时短期投加NO_3~--N配水以驯化培养反硝化聚磷菌。保持系统内NO_3~--N浓度不变,在进水COD浓度为250 mg·L~(-1)时,反硝化除磷效果最佳,平均反硝化除磷量占除磷量的比为87.1%。不同pH下反硝化除磷速率的小试证明,在pH=7.0时得到最大的比吸磷速率2.1 mg P·(g VSS·h)~(-1)。此时调整NO_3~--N进水为另一个全程硝化反应器的出水,并加大排水比增加缺氧初的进水量使得反应器内缺氧时的pH接近7.0,与未改变pH时对比表明前者在缺氧段反硝化除磷速率加快。反应器共运行160 d,稳定完成COD的去除与反硝化除磷过程。  相似文献   

17.
针对污水处理厂二级生化出水硝酸盐氮浓度高的问题,选用高效硫自养反硝化菌,构建以生物陶粒为填料的自养反硝化滤池,模拟生活污水二级生化出水,调节运行参数,考察脱氮效果。结果表明,滤池经过10 d 200 mg/L NO_3~--N培养液的间歇培养和15 d 100 mg/L NO_3~--N连续进水驯化后挂膜成功,NO_3~--N去除率稳定在90%以上;在HRT为12 h下,滤池对进水NO_3~--N质量浓度为30 mg/L去除效果最好,NO_3~--N和TN去除率分别达到96%、93%,出水NO_2~--N含量1 mg/L以下,但硫酸盐浓度为500~600 mg/L;进水NO_3~--N质量浓度30 mg/L,HRT为2~12 h时,滤池对NO_3~--N去除率均可达85%以上,HRT2 h脱氮性能下降,最佳HRT为2 h;滤池反硝化脱氮率沿填料厚度的增加而逐渐增加,HRT为12 h时在填料高度5 cm处即可达到70%的NO_3~--N去除率。  相似文献   

18.
针对某电镀污水处理厂物化出水,采用活性污泥法+后置反硝化曝气生物滤池(BAF)工艺进行脱氮深度处理中试研究,结果表明,活性污泥法单元COD和NH3-N平均去除率分别达49.37%和69.30%。反硝化BAF单元NO_3~--N和TN平均去除率分别达90.47%和60.42%,出水NO_3~--N的质量浓度基本在10 mg/L以内;停留时间对反硝化BAF脱氮效果影响不大,43 min出水时NO_3~--N容积负荷可达1.5 kg/(m3·d);去除单位氮(N)的碳源消耗量和碱度增加量与理论值相近,反硝化BAF运行成本(碳源部分)为0.41元/t,折合去除每10 mg/L的N运行成本较低,为0.08元/t左右。  相似文献   

19.
以NaHCO_3为改性剂,改性聚β-羟基丁酸戊酸酯(PHBV)作为反硝化反应器的外加固体碳源和生物膜载体,反硝化去除水中NO_3~--N。研究NaHCO_3对PHBV原料的影响,以及改性后PHBV填料反应器的反硝化效果。结果表明,NaHCO_3能使PHBV产生多孔结构,提升空隙率1.20~2.06倍。改性PHBV具有活性污泥包容量提高、微生物与固体碳源接触面积增加、降低水流冲击、增加生物膜强度等优点。红外光谱分析显示改性PHBV表面官能团与原料PHBV一致,未产生改变。在PHBV与NaHCO_3质量比为10:0.5时,填料各方面表现为佳。适当的改性能够使PHBV原料产生一次性溶解性有机物(DOM),提高微生物繁殖速率,缩短挂膜时间。在小试反应器中,NO_3~--N去除率至少在95%以上,其他参数未有负面变化。  相似文献   

20.
MBBR中HRT与pH对短程硝化反硝化的影响   总被引:1,自引:0,他引:1  
为了开发经济高效的生物脱氮工艺,在MBBR中进行了短程硝化反硝化的研究,考察了HRT与pH对短程硝化反硝化的影响。结果表明,在短程硝化反硝化过程中,在室温、不控制溶解氧的条件下,NH_4~+-N与COD去除率随着HRT的延长而增大,出水NO_2~--N随着HRT的延长先增大后减少,当HRT为8h时出水NO_2~--N最高;当pH由5增加到10时,COD去除率的变化较小,NH_4~+-N去除率和出水NO_2~--N则随着pH的增大先增大后减小,pH在8~9时对NH_4~+-N的处理效果最好,出水NO_2~--N最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号