首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过对软土地区新建轨道交通隧道下穿某既有线工程施工监测过程及相关数据的详细分析研究,发现受盾构施工影响既有线结构竖向位移变化规律与土体地表竖向位移变化规律相似,地表、既有隧道结构施工后沉降变形量显著大于推进过程中变形量,表明盾构穿越对既有线的风险影响范围主要在隧道投影区域.同时,研究分析上述结果产生的可能原因,并针对控...  相似文献   

2.
以武汉新建轨道交通12号线盾构区间下穿既有2号线长~汉盾构区间为工程背景,采用三维数值模拟分析新建线路施工对既有轨道交通变形的影响。研究结果表明:盾构掘进施工对既有结构及线路影响较小,盾构隧道贯通后区间结构最大竖向位移为–4.96 mm,最大水平位移为0.309 mm,2号线盾构区间累计最大沉降量为–2.86 mm,区间结构变形量和沉降量在相关规范控制范围内,满足区间安全运营要求。通过设计上加强管片配筋、增加注浆孔,隧道施工中加强掘进参数控制和及时同步注浆,加强二次注浆,同时对2号线长港路站—汉口火车站区间设置监测点,指导施工,保证地铁安全运营。  相似文献   

3.
在既有隧道下进行浅埋隧道开挖会引起地层产生位移,继而导致既有隧道变形。由于既有隧道与地层刚度差别巨大,常规的解析法无法计算存在不同刚度的地层位移场。基于镜像法,采用当层法对既有隧道刚度进行等效,建立综合考虑新建隧道-岩土体-既有隧道三者相互作用的计算模型。以北京地铁10号线国贸站-双井站区间下穿既有1号线区间工程为例,采用该计算方法,研究新建隧道下穿施工对地层及既有隧道的影响。研究表明,计算结果与实测变形吻合较好,解析解能很好的解释既有隧道对地层变形的阻隔和扩散作用。研究成果为下穿施工引起的既有隧道及地层沉降计算提供了一种新的解析方法。  相似文献   

4.
以重庆轨道环线区间隧道下穿既有结构为背景,利用数值分析与现场监控量测相结合的方法,对复合地层双线TBM隧道施工影响下围岩及既有结构的变形进行了深入研究。数值计算结果表明,右线开挖引起的建筑物沉降远大于左线引起的沉降,隧道施工对既有结构的沉降影响与沉降槽宽度有关。TBM施工对建筑物桩基的变形受力影响与其距隧道中线距离密切相关,离隧道中线越近,桩基沉降越大;不同围岩区域桩身轴力变化趋势也不相同,主要与桩身周边土体相对竖向位移有关。现场监测结果表明,受地层差异及既有结构刚度的影响,双线地表沉降呈偏态的单凹槽状。TBM到达前,建筑物向远离隧道方向倾斜,隧道下穿过程及下穿后,建筑物向隧道方向倾斜。综合数值计算结果和现场监控量测数据,二者所反映的规律基本相同,为今后TBM在类似工程环境中的应用提供借鉴。  相似文献   

5.
马浴阳 《建筑机械》2023,(5):29-36+41
为解决新建多重地质构造复杂型隧道穿越既有隧道的沉降问题,以兰州市金城隧道下穿兰州市北环路九安隧道工程为背景,分析了隧道下穿施工的影响机理和特征,采用MIDAS模拟了工程施工过程,得到了施工过程中各个工序对地表沉降的影响,为施工提供防止变形的措施。研究结果表明,采用盾构法下穿既有隧道时,随着盾构的推进会造成既有隧道出现“先隆后沉”的竖向沉降、“向前-稍向后-再向前”的水平变形以及轻微的环向扭转变形的特征,针对变形和沉降规律提出了相应的注浆加固方法,能够显著提升隧道的稳定性。  相似文献   

6.
以苏州地铁5号线劳动路站至盘胥路站区间为例,该区间盾构施工下穿既有超近距地铁2号线隧道(最小竖向间距仅3. 36 m),拟定监测方案后,结合既有线内自动化监测手段,分析观测点沉降规律与既有隧道纵轴线变形演化规律,研究超近距离条件下盾构施工影响效应。解决盾构掘进下穿既有运营地铁隧道可能诱发的沉降变形与结构开裂等,保护线网安全运行。  相似文献   

7.
《低温建筑技术》2019,(8):111-114
针对南宁地铁4号线盾构隧道近下穿既有南环线铁路隧道工程,采用三维有限元数值计算方法,分析了新建盾构隧道近距离下穿施工对地表和既有隧道结构及轨道的影响。数值计算结果表明,通过对下穿段一定范围内的盾构周边土体进行注浆加固可以有效控制盾构隧道施工对地表和上方铁路隧道的影响,能够将地表沉降、既有隧道衬砌变形及结构安全、轨道变形控制在安全范围内,为工程施工提供重要参考依据。  相似文献   

8.
针对某新建隧道斜交下穿既有高速铁路客运专线隧道,提出预留开挖区内先进行预支护,再进行开挖的施工方案。通过模拟不同工况下既有隧道的沉降变形,并与经验公式法及实测既有隧道沉降变形作比较,研究新建隧道下穿施工对既有隧道同一横断面不同监测位置的影响,结果表明新建隧道采用锚杆加超前小导管进行预支护能将沉降值控制在许可范围内;既有隧道结构横断面上会产生扭转变形,建议对既有隧道进行注浆加固。  相似文献   

9.
随着城市轨道交通的快速发展,对地下空间的利用也越来越充分,新建地铁线路不可避免地要近接既有结构进行施工,常常造成新建及既有结构物受力复杂、既有结构变形过大等问题;对于软硬不均地层条件,该类问题更为显著。文章以深圳地铁7号线在软硬不均地层条件下下穿既有1号线及上部过街通道为工程背景,通过建立三维数值仿真模型对盾构下穿既有线路及其附属设施的影响进行分析,研究结果揭示了新建地铁线路正交下穿既有盾构隧道近接施工时,既有隧道上方地表及过街通道沉降、既有隧道二次变形的时空分布规律,并据此提出了针对性的掘进控制措施。  相似文献   

10.
以广深港客运专线隧道盾构施工、下穿深圳地铁3号线既有隧道为工程背景,利用FLAC3D软件进行施工过程模拟。探讨了施工过程中新建隧道周边地层位移、既有隧道地面、底部沉降的分布性状以及新建与既有隧道的安全。结果表明,最大沉降点都位于新建与既有隧道的中心线上,沉降分布以各自中心线为对称轴呈左右对称性状,在本地质条件和特定盾构推力情况下,地面沉降和隆起满足要求,既有隧道结构底板沉降满足运营要求。  相似文献   

11.
随着城市化进程的推进,城市地铁数量及规模得到空前发展。文章主要针对新建盾构隧道斜交下穿既有市政框架隧道,以杭州地铁五号线浙三区间斜交下穿紫金港路隧道工程为依托,研究双线盾构斜交下穿时,上方既有隧道的竖向位移、扭转与盾构所在的位置及注浆压力的关系,找出下穿不同阶段各项施工技术参数变化对于上部隧道沉降及变形影响的规律,并给出相应的建议,为以后类似的工程提供指导与参考。  相似文献   

12.
高吉平 《市政技术》2023,(4):76-83+108
随着城市轨道交通的快速发展,新建地铁隧道近距离下穿既有运营地铁隧道日渐成为常态。因此,新建盾构隧道近距离下穿既有运营隧道的综合控制技术、施工安全评价及时空变形规律成为当前研究的热点问题。以广州地铁22号线下穿既有地铁3号线为例,采用现场监测、理论分析、数值模拟等方法,重点研究了新建双线盾构隧道分别下穿既有运营双线隧道过程中的时空变形规律,特别是隧道结构、轨顶面等关键位置处的竖向变形规律。首先分析了水平定向钻孔加固范围和土体参数加固影响范围,提出了加固区岩土力学参数增强系数计算方法,确定了加固地层计算参数。然后基于精细化建模,分析了22号线左线下穿3号线时既有运营隧道的时空变形规律及隧道结构内力,并与监测结果进行了对比,对比显示计算结果与监测结果吻合度较高,充分证明了该研究提出的分析方法的可靠性,对下穿既有运营隧道安全评价及施工技术选取具有重要的借鉴意义。  相似文献   

13.
以深圳地铁7号线、9号线四条小净距隧道近距离下穿既有地铁1号线工程为研究背景,通过离心模型试验方法,分析了小净距隧道群施工对周围土体应力影响规律,揭示了盾构多次近距离穿越施工引起既有线变形及受力变化机理。研究表明:(1)小净距四线隧道开挖具有明显的"群洞效应",隧道群的形成会导致松动区扩大、土拱向上扩展,从而引起新建隧道承受竖向土压力增加;(2)既有隧道沉降随穿越次数的增多而增大,最终沉降为4次穿越叠加的结果,峰值位置基本位于4条隧道中心线正上方,盾构隧道每次穿越引起沉降增幅为13%~48%,穿越区域横向影响范围可达60 m以上;(3)新建隧道的开挖对既有隧道环向弯矩的影响不大,弯矩变化不超过10%,而对既有隧道纵向弯矩影响较大,随着穿越次数增加纵向弯矩明显增大,这也是隧道下穿施工引起纵向裂缝和渗漏水的主要原因。结合数值模拟计算进行对比分析,得到规律与试验相一致,进一步验证了试验结果对实际工程的可靠性。  相似文献   

14.
地铁盾构隧道下穿既有高铁线路,由地层损失引起地表沉降,对高铁桥梁桩基产生不利影响。本文根据国内地铁隧道下穿既有铁路的相关实例,总结隧道下穿后对既有铁路轨面沉降、钢轨高差、轨距等指标控制限值。结合国内某城市盾构隧道下穿铁路的实际工程,采用有限元数值模拟方法,研究盾构下穿前采用隔离桩防护措施对高铁桥桩变形的影响。结果表明,合理的隔离桩防护结构能够有效减小墩台竖向沉降和水平位移,能满足高速铁路线的轨道控制限值要求,并提出盾构近距离下穿高铁桩基的施工控制措施。  相似文献   

15.
唐汐 《建筑结构》2023,(9):141-146+152
以北京地铁12号线大蓟区间下穿13号线高架区间为背景,在风险保护设计的基础上,完成了暗挖地铁隧道下穿地铁高架区间三维计算模型的建立,对比分析了不加固、仅洞外加固、洞外加固+桥桩底部加固三种工况下13号线高架区间结构竖向位移、水平位移、差异沉降变化特征,并将计算结果与实测结果进行了对比分析。研究表明:穿越施工显著影响范围约为4倍暗挖地铁隧道跨度;双线间既有结构受叠加施工影响大于双线外结构,是施工监测的关键位置;后施工隧道两侧承台差异沉降大于先施工隧道两侧承台差异沉降;现场监测结果反映了合理的暗挖隧道设计和洞内外风险控制措施是既有地铁线路保护的基础。  相似文献   

16.
本文首先对新建隧道下穿上部既有地铁隧道的类型进行了划分,对此类工程既有隧道的变形特征进行了总结。进而,在假定隧道正交下穿施工引起的地层沉降槽符合高斯曲线、既有隧道与周边地层的变形趋势一致的基础上,基于弹性地基梁模型,推导了计算既有隧道受新建隧道垂直下穿施工影响而产生的纵向沉降曲线表达式、纵向应力计算公式以及既有隧道所能承受的极限沉降表达式。形成了定量评价新建隧道垂直下穿施工对上部既有地铁隧道纵向变形和内力影响的理论计算方法和思路。通过与具体工程实例监测结果的对比分析,上述方法所得计算结果与实测值吻合较好,可以满足工程使用要求,对今后类似工程的设计和施工很有借鉴意义。  相似文献   

17.
以在建地铁隧道下穿既有工程为研究对象,对既有车行隧道结构变形以及地层土体变形影响情况进行综合分析并提出新建盾构隧道合理的掘进方案。主要研究工作:以广州地铁21号线黄村站—世界大观站盾构区间下穿既有车行隧道案例为依托,利用有限元软件和有限差分软件分别进行数值建模和计算分析,制定左右线新建隧道不同错距的掘进方案,研究左右线新建盾构掘进面错距大小对其下穿既有车行隧道的变形影响,得到合理的施工错距范围。  相似文献   

18.
《地下空间与工程学报》2021,17(z1):375-381,403
呼和浩特地铁2号线盾构隧道下穿海亮广场人行过街通道是全国首个盾构下穿矩形顶管隧道的工程案例,没有相关工程经验可以借鉴,下穿引起的矩形顶管隧道纵向变形等理论问题尚不清楚,有待进一步研究。为此,本文以该工程为背景,通过现场监控量测和数值模拟,对盾构隧道近距离下穿施工引起的矩形顶管隧道纵向变形规律进行研究。主要得到以下成果:新建盾构隧道施工引起的既有矩形顶管隧道结构沉降,单一隧道穿越后,用Peck公式拟合得到的沉降槽曲线符合高斯分布,两条隧道穿越后,用双Peck公式拟合得到的沉降槽曲线接近"W"型;矩形顶管隧道结构最大沉降值为17.02 mm,最大沉降点的位置位于盾构隧道正上方;对矩形顶管隧道管节错台影响最大的部位是盾构下穿位置,距离盾构隧道越近,错台量越大;管节张开主要发生于沉降槽曲线的反弯点与最大沉降点,在"W"型沉降槽曲线中存在多处张开量较大的情况,因此,在新建盾构隧道施工过程中应准确确定既有结构沉降槽曲线的反弯点和极值点,并进行及时加固处理,确保既有矩形顶管隧道结构安全。  相似文献   

19.
隧道下穿施工将对既有隧道产生位移与不可忽视的自身结构变形,影响既有隧道的运行安全。借助数值分析方法与现场自动监测,对近距离下穿既有隧道的影响展开研究,对实际施工工况进行数值模拟,以增加单元体积的形式,判断单元体积应变增量是否达到土体体积应变增量控制模拟注浆的过程,动态地分析了下穿过程对既有地铁隧道的影响。数值分析与现场监测分析表明盾构下穿对既有隧道竖向变形有一定影响。结合现场实测数据与数值模拟结果对比分析了隧道变形的规律,对既有隧道进行注浆加固能有效控制既有隧道变形,相关研究结果可为类似工程提供参考。  相似文献   

20.
黄强  王正明 《四川建筑》2010,30(6):100-101,105
通过对新建隧道下穿既有高速公路路面受力及变形分析可知,新建隧道下穿过程中,既有高速公路路面将产生较大的竖向下沉,路面底部处于较为不利的受力状态,新建隧道上弧形开挖过程中路面将产生最大位移量。建议在施工中就上述部位及不利工况应重点监控,确保工程安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号