首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
采用连接钢框和高强螺栓作为连接件,可实现相邻上下层预制混凝土墙板之间的干式连接。为评价该全装配式剪力墙的抗震性能,对2 个试件分别进行了单调加载试验和低周反复荷载试验。试验结果表明,该新型全装配式剪力墙的变形能力、延性性能及耗能能力略优于或相当于装配整体式剪力墙及现浇剪力墙。在试验研究的基础上,计入连接件的影响,推导了剪力墙屈服点、峰值点、破坏点荷载和侧移的理论公式。该计算公式反映了构件的主要受力特点,与试验结果吻合较好。计算结果表明:连接钢框的变形对总侧移的影响可以忽略不计,高强螺栓的滑移引起的顶点侧移占总侧移的12.0%~44.8%。  相似文献   

2.
为研究采用灌浆套筒连接的全装配式框架-剪力墙结构的抗震性能,设计制作了1榀1/2比例两层两跨灌浆套筒连接全装配式框-剪结构模型试件PC-3,并对其进行了低周反复加载试验。通过与已有试验结果对比分析,研究了结构的破坏模式、滞回性能、刚度退化、位移延性和耗能能力等抗震性能指标。结果表明:灌浆套筒连接全装配式框-剪结构试件PC-3与全现浇试件RCFW的破坏模式基本相同,梁端塑性铰长度减小、位置外移,具有良好的耗能能力和较好的刚度特性,试件PC-3的屈服荷载、峰值荷载、极限荷载均略大于全现浇试件RCFW的相应值,但其差值均小于5.0%,延性略小于全现浇试件RCFW,加载过程中耗能较为平稳。两种全装配式框-剪结构均具有良好的抗震性能,工程实践中可供设计人员选择采用。  相似文献   

3.
该文通过6榀1/3缩尺的两层单跨梁柱四角钢连接钢框架内填钢筋混凝土剪力墙结构(简称PSRCW)试件模型的低周反复荷载试验,研究了PSRCW结构的传力机理及破坏模式,分析了PSRCW结构的滞回性能、刚度退化、变形及延性性能、耗能能力以及内力分配关系等。研究结果表明:PSRCW结构具有较高的承载力和较大的抗侧移刚度,耗能能力一般。设计荷载水平,与钢梁相连抗剪连接件分担约80%的水平剪力,钢框架分担约70%倾覆力矩。抗剪连接件在拉剪耦合受力状态下易发生低周疲劳破坏,改善抗剪连接件的性能是提高PSRCW结构延性的关键。  相似文献   

4.
课题组前期提出一种竖向缝采用螺栓连接的全装配式联肢复合墙,为进一步明确此类连接方式对墙体抗震性能的影响规律,以连接钢板厚度为变参设计了3榀联肢复合墙试件(PCW-B),通过拟静力试验对比研究各试件的破坏模式、裂缝发展、抗震性能,以及竖向缝在受力过程中的变形规律。试验结果表明:竖缝连接钢板厚度对试件破坏形态无明显影响;提升竖缝板厚可显著增强试件的初始刚度、承载力,但会降低试件延性;当板厚超过6 mm可显著提升试件耗能性能;分析并提出竖缝受剪承载力主要取决于连接件的抗剪和界面摩擦力抗剪两项,其中连接件抗剪贡献因素包括:连接钢板强度、高强螺栓和预埋件处箍筋作用力,并基于此提出竖向接缝受剪承载力计算公式。此公式亦可为其它墙体结构提供理论参考。  相似文献   

5.
本文分别对按1/2比例制作的1榀内填棉花秸秆草砖的框架结构墙体和1榀纯混凝土框架进行水平低周反复荷载作用下的抗震性能试验,研究棉花秸秆草砖填充墙对框架结构的承载能力、刚度、延性、耗能等抗震性能的影响,试验结果表明棉花秸秆草砖与外框的黏结性能能减缓墙体的破坏速度,两者黏结性能破坏时,草砖也未退出工作仍能与外框共同抵抗外力作用;草砖的弹性模量小,因此墙体的滞回曲线比纯框架墙体"捏拢"现象更明显;草砖能增强框架结构的延性和耗能性能并有效提高墙体刚度。  相似文献   

6.
朱张峰  郭正兴 《工程力学》2013,30(5):125-130
对2个预制装配式和1个现浇短肢剪力墙试件进行了低周反复荷载试验。与现浇试件对比,掌握预制装配式剪力墙的强度、位移延性及耗能能力等。试验结果表明:装配式试件破坏形态与现浇试件明显不同,水平拼缝为薄弱部位,变形集中。上部预制墙体基本保持完好,破坏主要集中在下部墙体,并表现为剪切破坏,与理论分析一致。有限元分析表明增加装配式短肢剪力墙中部连接钢筋,可增加水平拼缝混凝土接触面面积,减小其剪应力,从而有效改善墙体受力性能,提高墙体的承载能力和变形能力。  相似文献   

7.
矩形钢管混凝土边框组合剪力墙及筒体结构抗震研究   总被引:6,自引:1,他引:6  
钢管混凝土边框组合剪力墙及筒体是一种新型抗侧力部件。该文对不同混凝土强度等级,不同轴压比,不同剪跨比,不同强弱抗剪连接键等设计参数的矩形钢管混凝土边框组合剪力墙的抗震性能进行了研究。进行了2个普通钢筋混凝土剪力墙和7个矩形钢管混凝土边框组合剪力墙的低周反复荷载试验,以及2个设置不同形式抗剪连接键的剪力墙节点的低周反复荷载试验。在试验基础上,对比分析了剪力墙的承载力、延性、刚度及其衰减过程、滞回特性、耗能能力及破坏特征。建立了组合剪力墙的承载力计算模型,计算结果与实测结果符合较好。研究表明:这种新型组合剪力墙及筒体可有效地将混凝土剪力墙侧向刚度和承载力大的优势与钢管混凝土柱抗震延性好的优势组合,钢管混凝土边框柱与混凝土剪力墙之间的抗剪连接键能可靠工作。工程应用效果良好。  相似文献   

8.
为了考察边框刚度对屈曲约束钢板剪力墙抗震性能的影响,该文将带边框普通钢板剪力墙和屈曲约束钢板剪力墙作为研究对象,采用ABAQUS非线性有限元分析软件,计算边框刚度对构件受力性能的影响。计算结果表明,在水平往复荷载作用下,带边框屈曲约束钢板剪力墙的滞回曲线饱满,等效粘滞阻尼系数较大,边框柱与边框梁对侧向刚度、承载力与塑性耗能均有一定贡献。在1/50层间位移角时,屈曲约束钢板剪力墙边框柱与边框梁的内凹变形均很小,Mises应力均小于普通钢板剪力墙的边缘构件,损伤程度显著降低,说明对边框柱与边框梁抗弯刚度的要求可以显著低于普通钢板剪力墙。屈曲约束钢板墙内嵌钢板的拉力带分布均匀、细密,最大面外变形与损伤程度均小于普通钢板剪力墙。螺栓对盖板面外变形有很大的约束作用,当螺栓间距较小时,混凝土盖板与钢筋的Mises应力显著减小。现行技术标准中对非加劲钢板剪力墙边框刚度的规定,不能很好地适用于屈曲约束钢板剪力墙。  相似文献   

9.
塑性铰支墙可用于替代传统RC剪力墙的底部加强区域,形成稳定的墙底塑性耗能区。通过设置只承担水平剪力和竖向荷载的抗剪组件和只承担弯矩的抗弯组件实现剪力墙弯剪解耦设计的目的。该文在已提出基于"弯剪分离"思想的塑性铰支墙的基础上展开了考虑面外变形的装配式塑性铰支墙体的抗震性能试验研究。该文介绍了两片1/3缩尺的墙体试件的拟静力试验,两个试件分别采用装配式混凝土剪力墙和装配式钢板剪力墙。试验结果表明:该文提出的装配式塑性铰支墙的连接方式是合理有效的,且该墙体试件在存在面外变形的情况下仍具有良好的抗震性能。  相似文献   

10.
为适应装配式组合梁的发展,研发一种新型不锈钢可拆卸螺栓连接件,并对其疲劳荷载作用下的力学性能退化规律开展研究。首先,通过文献和市场调研,充分考虑现有螺栓的优缺点,设计制作一种新型不锈钢可拆卸螺栓连接件用于装配式组合梁;其次,制作6组新型螺栓连接件的推出试件,进行静载和疲劳试验,对比静载与不同疲劳加载次数后试件的破坏形态,重点分析新型螺栓连接件在疲劳加载过程中剩余承载力、残余滑移量、抗剪刚度及延性系数的退化规律;最后,基于疲劳累积损伤理论和材料剩余强度模型,确定新型螺栓连接件在疲劳加载过程中的损伤度,进而建立新型螺栓连接件的剩余承载力计算模型。结果表明:新型螺栓连接件在静力和疲劳作用下呈现不同的变形及断面破坏特征;在疲劳荷载作用下,新型螺栓连接件的各项力学性能均呈现不可逆的退化,在该试验中试件在疲劳加载270万次后剩余承载力退化12.1%,延性系数退化67.6%,抗剪刚度退化12.9%,退化较为明显;建立的新型螺栓连接件剩余承载力计算模型计算结果与试验值吻合良好。  相似文献   

11.
为研究钢框架内填预制再生混凝土墙结构的抗震性能,对3榀单层单跨1∶3缩尺的模型试件进行了拟静力试验。通过对钢框架是否设置预制墙板及不同梁柱节点连接形式的对比,深入分析了钢框架内填预制再生混凝土墙结构的破坏形态、传力机理、承载力、延性及耗能能力等指标。结果表明:设置预制再生混凝土墙板后,结构的承载力和抗侧刚度明显提高,与纯框架相比,极限承载力提高1.44倍,抗侧刚度提高了3倍;结构位移延性系数在2.81~2.86,预制墙板的设置略微降低了结构的延性;当层间位移角为1/50时,结构承载力退化系数仍大于0.90,表明该结构具有较高的安全储备;两种梁柱连接节点下峰值荷载仅相差4%,说明梁柱节点刚度对结构承载力的影响很小;从破坏形态看,两试件均在预埋件与墙板连接处形成水平贯通裂缝,发生剪切破坏,设计中预埋件的连接构造应引起足够重视。  相似文献   

12.
为研究型钢再生混凝土结构(SRRC)的抗侧力性能,进行了3榀不同填充程度的型钢再生混凝土框架-再生混凝土空心砌块墙体混合结构的低周反复荷载试验。通过测试试件在侧向力作用下的受力过程和破坏形态,研究型钢再生混凝土框架结构的受力机理和抗震性能,获得了再生混凝土空心砌块墙体对框架的承载力和抗侧刚度的影响;分析结构在不同受力阶段的承载力和刚度变化情况,以及结构在同级循环荷载作用下的刚度退化规律。结果表明:型钢再生混凝土框架-再生混凝土空心砌块填充墙结构具有较高的承载力和抗侧刚度,全高填充墙对型钢再生混凝土框架抗侧刚度的影响较大,结构初始刚度大,而刚度衰减快,半高填充墙在结构受力初期可提高结构承载力和刚度,而在受力后期具有与空框架相似的退化规律。  相似文献   

13.
刘青  李国强  陆烨 《工程力学》2016,33(10):105
钢框架延性好,但抗侧承载力和刚度较小,一般可加设钢板墙等抗侧力构件来达到结构的抗侧需求。屈曲约束钢板剪力墙是一种新型抗侧力构件,通过面外约束板的限制,钢板墙在剪力下不会发生屈曲破坏,因此其抗侧刚度、承载力和延性均较大。屈曲约束钢板剪力墙钢框架不但大大提高了原框架的刚度和承载力,同时还具备良好的延性。考虑到加设钢板墙后,框架梁的抗剪刚度与承载力可能不足,该文选取研究的屈曲约束钢板墙除了上下端与框架梁连接外,部分还与框架柱连接。对于这种新型内嵌屈曲约束钢板墙钢框架,该文从理论上详细推导了结构的抗侧刚度、屈服承载力等力学性能参量计算方法,得到了相应的理论公式。通过相关文献的试验数据对比,发现理论计算值与试验值很接近。  相似文献   

14.
为了研究钢-混凝土双面组合作用梁框架节点的抗震性能,设计了3个钢-混凝土双面组合作用梁十字形框架节点和1个普通钢-混凝土单面组合作用梁十字形框架节点,并对其进行低周往复加载试验,对比分析其破坏模式、极限承载力、初始刚度、耗能能力、延性、刚度退化等抗震性能指标;通过改变下部混凝土板厚度和传力方式,研究下部混凝土板不同厚度和不同传力方式对双面组合作用梁力学性能的影响。结果表明:与普通钢-混凝土单面组合作用梁框架节点相比,钢-混凝土双面组合作用梁十字形框架节点具有更高的承载力和刚度,适用于荷载较大的结构,但在延性、刚度退化和耗能能力等方面无明显优势;下部混凝土板采用集中传力和均匀传力的方式对双面组合作用梁抗震性能的影响无明显区别;下部混凝土板采用预制法制作和螺栓连接更加方便、可靠。  相似文献   

15.
李斌  黄炜 《工程力学》2020,37(5):178-189
通过6榀装配整体式网格剪力墙试件的低周反复荷载试验,研究了预制墙板竖向钢筋连接方式、竖向接缝形式,布筋方式对墙体抗震性能及压弯承载力的影响,试验结果表明:6榀墙体均发生以竖向边缘构架破坏为主的弯曲型破坏;预制墙板竖向钢筋采用预埋件焊接时,能有效提升墙体的承载力;预制墙板竖向接缝形式对墙体的承载力影响不大;井字形布筋墙体的承载力及延性略大于其他类型布筋墙体。基于平截面假定,充分考虑预制墙板可靠连接钢筋作用,忽略未连接钢筋作用,建立墙体在开裂、屈服、峰值、极限状态弯矩-曲率计算方法,并对影响其各阶段承载力计算公式的因素进行分析。结果表明,所建立的弯矩-曲率计算公式能较为准确地描述装配整体式网格剪力墙各阶段的荷载-变形关系,计算值与试验结果吻合较好。  相似文献   

16.
钢板剪力墙因具有良好的抗震性能被大量应用到高层建筑和高烈度区域。为解决装配式钢板剪力墙滞回曲线捏缩、平面外屈曲问题,该文提出一种带环形阻尼器的装配式高强钢板剪力墙。针对该装配式高强钢板剪力墙,变化高厚比和钢材牌号对其进行拟静力荷载作用下抗震性能有限元和试验研究,分析破坏模式、滞回曲线、骨架曲线、刚度退化、耗能性能和延性。研究结果表明:该装配式高强钢板剪力墙内嵌板环形阻尼器和边界连接板带屈服破坏,其他构件完好;滞回曲线饱满,位移延性系数在5.7~8.7,抗震性能良好;提出的抗剪承载力计算公式简单明了、概念明确,与有限元模拟和试验吻合良好。  相似文献   

17.
为研究装配式钢-混凝土组合管(SRCT)剪力墙的轴压性能,完成了7个SRCT剪力墙试件的轴压性能试验,分析了试件的破坏形态、承载能力、位移延性、初始刚度等轴压性能。结果表明:SRCT剪力墙具有良好的轴压承载能力、刚度和变形能力,表现出良好的轴压承载性能;SRCT剪力墙轴压承载能力和初始刚度与距厚比成反比,延性与距厚比成正比;拉结筋布置形式对SRCT剪力墙的轴压承载力有一定影响,对初始刚度影响较小,拉结筋梅花形布置的SRCT剪力墙轴压承载力更高;侧面锚栓布置形式对SRCT剪力墙承载力有较大影响,随着侧面锚栓的加强,SRCT剪力墙承载能力增大;提出了考虑钢板局部屈曲和钢管对内膛混凝土约束作用的SRCT剪力墙轴压承载力和初始刚度计算方法,计算结果与试验值吻合良好。  相似文献   

18.
通过基于剪力墙板“屈服前屈曲”抗剪承载力设计准则设计的钢框架-薄钢板剪力墙原型结构,按1/4缩尺设计的三层试件进行水平低周反复荷载试验,得到了多层薄钢板剪力墙结构在水平荷载作用下的抗侧刚度、结构耗能、水平剪力和倾覆力矩在钢框架与剪力墙板之间的百分比分配、剪力墙板平面外位移及主拉应力的倾角,结果表明:结构的水平抗侧刚度随着荷载加载等级的增加而逐渐减小,但减小的幅度却越来越小;试件的耗能能力很强,结构在最后一级加载循环时消耗了6.7倍的屈服能;各层的耗能量随着加载位移的增加而逐渐变大,二层的耗能量最大,顶层次之,底层最小;在结构处于第1级加载的弹性状态时,剪力墙板承担的水平荷载比例约为60%~65%,钢框架承担的倾覆力矩比例约为80%;剪力墙板的主拉应力倾角变化范围为30°~51°。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号