共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
采用原位水热法制备了Cu/r GO催化剂并引入对苯二甲酸(TPA)对Cu基石墨烯复合材料进行改性研究,探究了不同溶剂、水热时间、沉淀p H对引入TPA的Cu/r GO催化剂材料微观结构特性的影响。通过XRD、FT-IR、XPS和SEM表征技术分析了催化剂的形貌结构及物化性质。考察了催化剂用于二乙醇胺脱氢的催化性能。在V(乙醇)∶V(水)=1∶1为溶剂,沉淀p H为13.0,160℃水热10 h,制备的催化剂性能最好,亚氨基二乙酸收率为86.55%,与没有添加TPA的Cu/r GO催化剂相比收率提高20%。TPA的加入,增强了GO片层间的相互作用,增加了GO片层间的有机官能团,稳定Cu2O并使其结晶度较好,增加催化剂活性位点,以提高反应速率。且粒径约为10 nm左右的Cu纳米粒子均匀分布在褶皱状片层结构的r GO表面,提高催化剂抗烧结性能。 相似文献
3.
4.
通过水热法合成了氮掺杂的石墨烯(Graphene-N),并还原得到了氮掺杂的石墨烯基铂催化剂(Pt/Graphene-N),利用X射线衍射(XRD)以及扫描电子显微镜(SEM)进行了材料分析,并借助电化学测试对比未进行氮掺杂的催化剂。试验数据表明:Pt/Graphene-N电化学活性面积相比于Pt/Graphene提高了8.1%,其甲醇氧化峰电流提高了56.3%,表明氮掺杂能够大幅提升甲醇氧化性能。 相似文献
5.
如今,生物乙醇及清洁能源,如醇类燃料电池(DAFCs)作为绿色能源引起广泛社会关注。最为明显是在设计和开发有效的阳极催化材料方面。本文使用一步溶剂热法合成还原态氧化石墨烯(reduced graphene oxide,RGO)/二氧化钛二元复合催化剂(RGO/TiO_2),以氧化石墨和钛酸四丁酯作为前驱体。并通过紫外光还原法,以H_2PtCl_6·6H_2O为前驱体,将Pt纳米颗粒直接沉积在石墨烯和TiO_2的界面间,制备出RGO/TiO_2/Pt三元复合材料,并对产物的形貌和结构进行了深入的研究。RGO/TiO_2/Pt三元纳米复合材料有望比传统的铂催化剂和RGO/Pt具有更高的催化活性和稳定性。 相似文献
6.
7.
8.
通过浸渍还原法以乙二醇为还原剂制备了石墨烯及石墨烯负载的铂催化剂(Pt/Graphene),通过XRD、SEM、Raman对材料进行了分析,通过电化学测试与Pt黑催化剂对比,试验数据表明:Pt/Graphene比Pt黑催化剂电化学活性面积提高了28%,对甲醇电催化氧化峰电流提高了52%,电化学活性面积和甲醇氧化反应的稳定性均有所提高。 相似文献
9.
10.
11.
石墨烯的制备与表征 总被引:8,自引:0,他引:8
采用液相氧化法制备了氧化石墨,并通过水合肼还原氧化石墨制备了石墨烯。采用傅里叶变换红外光谱(FT-IR)、拉曼光谱(RS)、X-射线衍射(XRD)、热失重法(TG)等测试方法对石墨、氧化石墨和石墨烯的结构与耐热性进行了对比分析。研究结果表明,氧化石墨被水合肼还原成石墨烯后,氧化石墨的一部分sp3杂化碳原子被还原成石墨的sp2杂化碳原子,石墨烯sp2杂化碳层平面的平均尺寸比氧化石墨大,但结晶强度和规整度比石墨有所降低。在本实验条件下,氧化石墨的还原状态结构不可能被完全恢复到原有的石墨状态,也就是说石墨烯的结构和石墨结构还是有差别的。热分析结果表明,石墨烯具有比氧化石墨更为优异的热稳定性。 相似文献
12.
13.
14.
15.
采用绿色可持续的催化剂替代传统贵金属或过渡金属催化剂是目前工业催化领域研究的重要方向。作为绿色催化剂中的重要成员之一,多孔碳基材料由于其独特的孔道结构、较大的比表面积、丰富的表面含氧官能团以及良好的导电性和抗腐蚀性,被广泛应用于生物、医药、电池和化工领域。近年来,非金属碳基催化剂被发现是一种良好的丙烷脱氢催化剂,具有替代传统Pt基和Cr基催化剂的应用前景,得到广泛关注。一般而言,碳基催化剂的催化活性与其表面性质和孔道结构有很大关系:(1)碳材料表面的含氧官能团、杂原子和缺陷位点等可以作为活性中心,活化丙烷分子中的碳氢键,实现脱氢的目的;(2)碳材料的孔道结构和电子特性等会影响反应物丙烷和反应产物丙烯分子的扩散和传质,进而影响碳基催化剂在丙烷脱氢反应中的活性、选择性和稳定性。综述近年来丙烷直接脱氢制丙烯碳基催化剂的研究进展,详细比较不同碳材料之间的优缺点和性能差异,系统讨论碳材料的活性位点和物化性质对其催化性能的影响,并对未来碳基丙烷脱氢催化剂的发展方向和应用前景进行展望。 相似文献
16.
17.
《化工学报》2017,(12)
利用真空抽滤方法,制备了纳米纤维素/石墨烯导电膜,将其嵌在聚乳酸表面得到聚乳酸基纳米纤维素/石墨烯导电复合膜。傅里叶红外(FT-IR)表征结果表明石墨烯与纳米纤维素之间存在一定的相互作用;当纳米纤维素与石墨烯质量比为1:2时,导电复合膜的电导率为12 S·cm-1,抗张强度达到13.62 MPa,水接触角为80.6°。热重分析(TGA)表征结果表明导电复合膜有良好的热稳定性,300℃时不同质量比的导电复合膜的失重量低于10%,相比纳米纤维素,在相同温度下失重量减少了20%。以聚乳酸材料为基体的导电复合膜,其抗张强度比未被嵌聚乳酸基体的纳米纤维素/石墨烯导电膜提高15~23倍,将聚乳酸基纳米纤维素/石墨烯导电复合膜埋在土壤中5周后,质量损失了3.7%。聚乳酸材料优异的力学性能和可降解性,扩展了纳米纤维素/石墨烯导电复合膜的应用范围。制备的导电复合膜在柔性导电材料领域有潜在的应用前景。 相似文献
18.
利用真空抽滤方法,制备了纳米纤维素/石墨烯导电膜,将其嵌在聚乳酸表面得到聚乳酸基纳米纤维素/石墨烯导电复合膜。傅里叶红外(FT-IR)表征结果表明石墨烯与纳米纤维素之间存在一定的相互作用;当纳米纤维素与石墨烯质量比为1:2时,导电复合膜的电导率为12 S·cm-1,抗张强度达到13.62 MPa,水接触角为80.6°。热重分析(TGA)表征结果表明导电复合膜有良好的热稳定性,300℃时不同质量比的导电复合膜的失重量低于10%,相比纳米纤维素,在相同温度下失重量减少了20%。以聚乳酸材料为基体的导电复合膜,其抗张强度比未被嵌聚乳酸基体的纳米纤维素/石墨烯导电膜提高15~23倍,将聚乳酸基纳米纤维素/石墨烯导电复合膜埋在土壤中5周后,质量损失了3.7%。聚乳酸材料优异的力学性能和可降解性,扩展了纳米纤维素/石墨烯导电复合膜的应用范围。制备的导电复合膜在柔性导电材料领域有潜在的应用前景。 相似文献
19.