首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究以聚丙烯接枝马来酸酐(PP-g-MAH)和聚烯烃弹性体接枝马来酸酐(POE-g-MAH)为界面相容剂的长玻璃纤维增强尼龙6(LGF/PA 6)复合材料的力学性能,并与短玻璃纤维增强尼龙6(SGF/PA 6)复合材料的力学性能进行对比。结果表明:LGF/PA 6复合材料的拉伸强度、弯曲强度和弯曲模量均随着玻璃纤维含量的增加呈直线上升趋势,玻璃纤维质量分数达到40%时,增强效果十分显著;在添加相同含量的玻璃纤维时,LGF/PA 6复合材料的拉伸强度、弯曲强度、弯曲模量低于SGF/PA 6复合材料;2种复合材料的冲击强度均随着玻璃纤维含量的增加呈非线性增加,当添加相同含量的玻璃纤维时,LGF/PA 6复合材料的冲击强度高于SGF/PA 6复合材料;两种界面相容剂均改善了玻璃纤维与PA 6的界面性能,显著提高了复合材料的冲击强度,其中添加PP-g-MAH的LGF/PA 6复合材料的冲击强度的提高高于添加POE-g-MAH的,但拉伸强度和弯曲强度均有不同程度降低,其中添加POE-g-MAH的LGF/PA 6复合材料的拉伸强度、弯曲强度和弯曲模量下降得较为明显。  相似文献   

2.
陈祯  王亚凤  陈兴刚  桑晓明 《塑料》2020,49(3):24-27
以改性短碳纤维为增强材料增强PC/ABS合金,采用熔融共混的方法制备了PC/ABS短碳纤维复合材料,研究了复合材料样条的力学性能与短碳纤维含量的关系。扫描电镜和红外光谱分析表明,纤维的改性有利于其与PC/ABS合金的结合。拉伸性能测试结果表明,3和6 mm改性碳纤维均能提高复合材料的拉伸强度,3 mm碳纤维复合材料优于6 mm。当3 mm的改性碳纤维复合材料添加量为10%时,复合材料的拉伸强度比含3%碳纤的复合材料提高了35. 52%;动态力学性能测试结果表明,添加改性碳纤维能提高复合材料的储能模量,增强复合材料的刚性。  相似文献   

3.
在PVC/ABS合金中加入环氧树脂(EP),研究了EP用量对PVC/ABS合金加工性能、力学性能以及维卡软化点的影响,结果表明,添加EP不利于PVC/ABS合金的加工,在低用量时,PVC/ABS合金的维卡软化点和拉伸强度得到明显改善,提高用量反而会使其维卡软化点降低;复合材料的缺口冲击强度随EP用量的增加下降明显。  相似文献   

4.
采用热模压成型的方法,在热塑性聚酰亚胺(TPI)中添加玻璃微珠(GB)、玻璃纤维粉(GFP)和短切玻璃纤维(SGF)进行复合增强,研究了3种不同形态填充材料及其含量对复合材料力学、摩擦磨损及热性能的影响。结果表明,随着填充物填充量的增加,所制得复合材料的刚性明显提高;并且填充物长径比越大,其作用效果越明显,由此制得的复合材料同时具有较低的体积磨损率及线膨胀系数。采用SGF增强复合材料的力学强度也随其填充量的增加显著增大,而采用GB及GFP填充的材料则呈下降趋势。采用SEM观察了复合材料断裂面的结构形貌,初步分析了其增强机理。  相似文献   

5.
论文通过溶液共混法制备了化学共价功能化改性石墨烯片(f GO)掺杂的聚亚苯基砜(PPSU)纳米复合材料(PPSU/f GO)以改善PPSU的力学性能、热性能和电性能。所得材料分别通过红外光谱(FT-IR)、原子力显微镜(AFM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、热重分析(TGA)、力学和电学性能测试表征了化学共价功能化改性对石墨烯的影响,以及f GO的含量对PPSU/f GO纳米复合材料的力学性能、热性能、导电性能及断面形貌的影响。研究结果表明:氧化石墨烯已成功获得功能化改性,其在溶剂中能均匀分散和剥离,厚度约为70 nm左右;加入少量的f GO(如≤1%(wt)时,f GO的分散尺寸较小,在基体中分散较均匀,并与PPSU基体有良好的界面结合,可有效发挥f GO对PPSU的增强增韧作用。PPSU/f GO纳米复合材料有较好的力学性能,其中以1%(wt)的f GO含量为最佳,其纳米复合材料的拉伸强度和抗冲击强度分别为207 MPa和72 k J?m-2,比纯PPSU分别提高了约15%和14%。当f GO含量过高时,f GO分散尺寸增大,与PPSU基体界面作用减弱,导致复合材料拉伸强度和抗冲击性能下降。随着f GO含量的增加,PPSU复合材料耐热稳定性能提高。电性能测试表明,当加入1%(wt)的f GO时,复合材料的电导率提高了近8个数量级,其导电逾渗阀值小于1%(wt)。综合考虑复合材料的力学和电性能,f GO的添加量低于1%(wt)为宜。  相似文献   

6.
以玻璃纤维(GF)增强,马来酸酐接枝氢化苯乙烯-丁二烯嵌段共聚物(SEBS-g-MAH)增容尼龙10T/尼龙66(PA10T/PA66)共混物,考察了两者用量对共混物力学性能、热变形温度、加工性能等的影响。结果表明,随着玻璃纤维添加量从5%增加到40%,复合材料的拉伸强度不断增加,缺口冲击强度先下降后增加,热变形温度大幅度增加,加工性能则变差,SEBS-g-M AH可以明显提高复合材料的缺口冲击强度。PA66与PA10T质量比为35/65,玻璃纤维添加量为40%,SEBS-g-M AH添加量为5%时,所得复合材料的拉伸强度为223. 4 MPa,缺口冲击强度为19. 65 k J/m~2,热变形温度为237. 9℃,熔体质量流动速率为12. 1 g/10min。冲击断面扫描电镜照片表明SEBS-g-MAH可以提高GF、PA10T和PA66之间的相容性。差示扫描量热研究表明PA66和SEBS-g-MAH会破坏PA10T结晶,GF添加量为5%时促进PA10T结晶,40%时稍微阻碍其结晶。  相似文献   

7.
研究了马来酸酐接枝聚丙烯(PP-g-MAH)和甲基丙烯酸缩水甘油酯接枝聚丙烯(PP-g-GMA)2种相容剂对碳纤维增强聚丙烯(CF/PP)复合材料性能的影响。结果表明:随着相容剂添加量的增加,CF/PP复合材料的拉伸强度、弯曲强度、缺口冲击强度增加,相容剂添加质量分数在6%时增加效果最为明显;2种相容剂对熔融温度及结晶度影响不大,但PP-g-MAH对CF/PP复合材料综合性能的提升优于PP-g-GMA。  相似文献   

8.
聚苯乙烯具有优良的使用性能,但是其耐环境应力、抗冲击性能及耐溶剂性能较差,热变形温度较低(70~98℃),使它的应用受到限制。许多研究者利用不同材料对聚苯乙烯进行了改性研究。笔者采用硅烷偶联剂对纳米TiO_2进行了表面有机改性,采用熔融共混的方法制备了聚苯乙烯/TiO_2纳米复合材料。并测试其拉伸强度、冲击性能和维卡软化温度。结果证明,纳米复合材料的拉伸强度先增大后减小,改性后纳米TiO_2添加量为0.9wt%时,材料的拉伸强度达到最大值35.7MPa;冲击强度先增大后减小。改性后纳米TiO_2添加量为0.9wt%时,材料的冲击强度最大;随着纳米TiO_2量的增加维卡软化温度降低,但是幅度不大。  相似文献   

9.
选取了不同类型的填充油,研究了不同类型的填充油对材料的性能影响,并探讨了了聚丙烯的添加量对材料性能的影响。实验结果表明,填充油加入后,降低了SEBS的熔融粘度,明显改善材料的加工性能,石蜡油优于环烷油,150#石蜡油适宜添加量为SEBS的25 wt%。当PP添加量为基体树脂的30 wt%时,O-SEBS/PP复合材料的拉伸强度为21.0 MPa,断裂伸长率为878%,力学和加工性能较好。  相似文献   

10.
通过熔融共混制备了增塑改性聚乙烯醇(TPVA)与聚己二酸对苯二甲酸丁二酯(PBAT)的复合材料,系统研究了PBAT用量对复合材料的热性能、加工性能、微观形态结构和力学性能的影响。研究表明:PBAT的加入使复合材料的结晶温度和熔点增加;随着PBAT用量增加,复合材料的熔体流动速率增大,扭矩平衡值下降,改善了复合材料的热塑加工性能;少量的PBAT与TPVA具有一定的相容性;随着PBAT用量的增加,复合材料的拉伸强度和断裂伸长率先增加后降低,当PBAT添加量为5%时,可使TPVA/PBAT复合材料的拉伸强度和断裂伸长率达到最佳,分别为27.03 MPa和643%。  相似文献   

11.
针对石墨烯在复合材料增强增韧上的应用,对石墨烯进行了酸化处理,采用超声分散方法制备酸化石墨烯/环氧树脂(EP)浇注体,并在此基础上制备了酸化石墨烯/碳纤维(CF)/环氧树脂(EP)复合材料。分别利用红外光谱和透射电镜表征了酸化石墨烯表面结构和微观形貌,利用拉伸、弯曲、冲击等机械测试手段评价了酸化石墨烯改性EP和CF-EP的力学性能,并利用扫描电镜对复合材料拉伸断面形貌进行观察。试验结果表明:石墨烯酸化处理后,成功在表面引入了羟基、羧基等极性基团;酸化石墨烯可对EP和CF/EP进行有效增强增韧,当其添加量为0.2wt%时,EP拉伸强度和冲击强度分别提高了23.3%和109.8%,CF/EP拉伸强度、弯曲强度分别提高了6.0%和10.6%,当酸化石墨烯添加量为0.5wt%时,CF/EP复合材料层间剪切强度提高了7.4%。微观形貌分析表明,酸化石墨烯对CF/EP增强改性主要是通过对EP进行增强增韧,同时提高CF和EP之间的界面性能来实现的。  相似文献   

12.
PC/ABS合金耐应力开裂性能   总被引:1,自引:0,他引:1  
采用机械共混法制备了PC/ABS合金.研究了PC/ABS合金耐应力开裂性能.实验得到PC/ABS合金在CCl4溶剂中开裂时间和冲击强度随着ABS质量分数的增加先增大后降低,同时合金的拉伸强度和弯曲强度均随着ABS质量分数的增加而降低,断裂伸长率增大.研究表明,当ABS质量分数为30%时,PC/ABS合金的耐应力开裂性能最好,其拉伸强度、冲击强度和弯曲强度降低不多,合金的综合性能较好.  相似文献   

13.
采用水解缩合法,通过改变正硅酸乙酯含量(TE/Si)以及烷硅比(R/Si),制备一系列聚硅氧烷阻燃剂,并将该系列阻燃剂以5%的添加量应用到PC中,研究PC/聚硅氧烷复合体系的力学性能和阻燃性能.结果表明:复合材料的拉伸强度在54.8~61.0 MPa之间,弯曲强度在98.0~104.0 MPa之间,与纯PC的拉伸强度59.7 MPa和弯曲强度105.7 MPa相比可知,阻燃剂对材料的力学性能影响不大.复合材料阻燃性能和极限氧指数(LOI)明显提高,在燃烧过程中,复合材料的热释放速率和烟气产生速率都有不同程度的降低.  相似文献   

14.
将接枝PP(g-PP)加入到聚丙烯(PP)/玻纤(GF)复合材料中,制备了一种高性能PP玻纤复合材料,研究了g-PP用量及玻纤含量对复合材料力学性能、耐热性能及熔体流动性能的影响。研究表明,g-PP能够显著改善PP/GF复合材料的力学性能及耐热性能,添加适量g-PP能使复合材料的拉伸强度达到AS/GF复合材料的性能标准,冲击强度及耐热温度大大高于其标准,对加工流动性没有明显影响。加入适量g-PP能使PP/GF复合材料发生脆韧转变,提高复合材料的结晶温度,减小材料的球晶尺寸。该玻纤增强PP复合材料有望替代AS/GF而应用于空调风轮的制造。  相似文献   

15.
《塑料》2015,(3)
长玻纤增强聚丙烯复合材料采用熔体浸渍工艺制备,研究过氧化二异丙苯(DCP)对长玻纤增强聚丙烯复合材料性能的影响。结果表明:随着DCP用量的增加,长玻纤增强聚丙烯复合材料的拉伸强度、弯曲强度、缺口冲击强度、弯曲模量均先增加后降低,通过动态力学性能和形态分析得出,当DCP添加量为0.4%时,长玻纤增强聚丙烯复合材料的拉伸强度、弯曲强度、弯曲模量和缺口冲击强度均最高。  相似文献   

16.
玻纤增强聚丙烯复合材料性能研究   总被引:7,自引:1,他引:6  
研究了玻纤(GF)、SEBS和聚丙烯接枝马来酸酐(PP-g-MAH)用量对GF增强聚丙烯复合材料性能的影响,以及PP/GF(65/35)、PP-g-MAH/PP/GF(15/65/35)的微观形态。结果表明:随着GF用量的增加,复合材料的拉伸强度、弯曲强度和弯曲模量增加,断裂伸长率降低,冲击强度先减小后增大,PP/GF复合材料断面呈脆性断裂;在PP/GF中添加增韧剂SEBS可以提高复合材料的冲击强度,但拉伸强度、断裂伸长率、弯曲强度和弯曲模量均减小;在PP/GF中添加增容剂PP-g-MAH,可使其拉伸强度、断裂伸长率、弯曲强度、弯曲模量和冲击强度均得到提高,当PP-g-MAH/PP/GF为15/65/35时,复合材料性能优异,材料断面呈韧性断裂。  相似文献   

17.
采用X射线能谱分析(EDX)研究了PC/ABS/聚硼硅氧烷阻燃合金的燃烧行为,同时考察了阻燃PC/ABS合金的力学性能和加工性能。结果表明,聚硼硅氧烷(PB)中的Si元素会随着燃烧过程的进行逐渐在合金表面进行富集,形成富含Si的绝缘炭层覆盖在基体表面,阻止合金继续燃烧,从而有效提高了PC/ABS合金的阻燃性能。聚硼硅氧烷使PC/ABS合金体系的力学性能有所下降,但拉伸强度下降较少,PB对PC/ABS合金的冲击强度影响较大。在阻燃PC/ABS合金体系中加入相容剂马来酸酐接枝ABS,可使合金体系的力学性能得到明显提高。适量的PB可以改善PC/ABS合金的加工性能。  相似文献   

18.
采用偶联剂KH570对玄武岩纤维(BF)进行表面改性,研究表面改性BF的长度、添加量对增强环氧树脂(EP)复合材料力学性能的影响。结果表明,改性BF表面产生很多凸起,变得非常粗糙。BF表面改性使复合材料的拉伸强度提高10%~20%,冲击强度提高10%~40%。随着改性BF长度及添加量的增加,复合材料的力学性能显著提高。当改性长BF的质量分数为4%时,与纯EP相比,复合材料的拉伸强度和冲击强度分别提高248.3%和451.5%。长BF的增强效果明显好于改性长玻璃纤维(GF),尤其纤维的添加量较大时复合材料拉伸强度的提高更为明显。当长BF的质量分数为4%时,长BF增强复合材料的拉伸强度较长GF增强复合材料提高37.8%,冲击强度提高9.2%。  相似文献   

19.
采用双螺杆挤出机制备了均聚聚丙烯(PPH) /聚烯烃弹性体( POE) 共混物和PPH/POE/滑石粉三元共混体系。使用差示扫描量热仪和万能试验机研究了共混物和复合材料的结晶性能、力学性能和加工性能。结果表明,POE对PPH力学性能和结晶性能有明显的影响,随着POE用量的增加,PP/POE共混物的结晶度明显下降,PPH/POE 共混物的冲击强度明显提高,但拉伸强度显著降低。POE含量为20 %时,冲击强度由2.1 kJ/m2提高到39 kJ/m2,拉伸强度由30 MPa 降低到22MPa。加入滑石粉可以提高PPH/POE共混物的拉伸强度,滑石粉添加量1份时,可使共混物的拉伸强度提高到24 MPa。  相似文献   

20.
采用双螺杆挤出机制备基于尼龙6T/66 (PA6T/66)和PA10T的玻纤增强高温尼龙(PA)复合材料,玻璃纤维的质量分数为20%。研究了增韧剂马来酸酐接枝乙烯–辛烯共聚物(POE-g-MAH)对复合材料力学性能的影响,并与玻纤增强PA66复合材料体系进行对比。研究结果表明:在高温PA体系中,随着POE-g-MAH含量的增加,拉伸强度和弯曲强度先上升后下降,对PA6T/66体系,POE-g-MAH添加量为5%时增强效果最优,拉伸强度和弯曲强度的提高比例分别为19%和15%,对PA10T体系,POE-g-MAH添加量为15%时增强效果最优,拉伸强度和弯曲强度的提高比例分别为25%和20%;而在PA66体系中,随POE-g-MAH含量的增加,拉伸强度和弯曲强度均下降。通过毛细管流变和扫描电镜的分析以及加偶联剂实验的数据,证实POE-g-MAH在玻纤增强高温PA体系中起到了界面相容剂的作用,增强了玻纤与高温PA树脂基体的相容性。高温PA较高的加工温度造成玻纤表面的偶联剂的降解损失是导致POE-g-MAH在该体系中产生增强效果的原因,并且增强效果最优时的POE-g-MAH添加量与不同高温PA的加工温度直接相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号