首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
曹磊昌  韩生 《上海化工》2012,37(10):15-19
主要总结了国内外利用酸性离子液体催化合成生物柴油的进展,介绍了离子液体特性及其催化制备生物柴油的优点。简述了酸性离子液体在酯化和制备生物柴油反应中的应用,对酸性离子液体催化制备生物柴油的研究方向进行了展望。  相似文献   

2.
通过咪唑、氢氧化钠和溴代烷烃反应生成了烷基咪唑,再与丁基磺酸内酯反应,经硫酸化直接制备了烷基咪唑酸性离子液体,以离子液体作为催化剂催化精馏制备甲缩醛,考察不同因素对催化精馏的影响,结果表明,当进料中醇醛摩尔比为3∶1,总进料量为20.1 m L/min,催化剂用量为3%(甲醛溶液质量),釜底加热温度为250℃,回流比为1时,催化精馏效果最优,此时甲醛转化率为66.70%,塔顶产品纯度为96.48%(质量百分数)。  相似文献   

3.
酸性离子液体催化合成草酸二乙酯   总被引:3,自引:2,他引:3  
张淑新 《化工进展》2011,30(2):407-410
合成了4种咪唑基酸性离子液体,用于催化草酸和乙醇酯化反应合成草酸二乙酯。考察了影响反应的主要因素,确定最佳反应工艺条件为:采用[Mim(CH2)3SO3H]HSO4离子液体为催化剂,反应温度为110 ℃,反应时间为90 min,n(乙醇)∶n(草酸)=4∶1。在此条件下离子液体循环使用4次,活性变化不明显,草酸二乙酯收率大于73%。此外,采用溶胶-凝胶法将[Mim(CH2)3SO3H]HSO4离子液体固定到SiO2上,用于催化酯化反应。结果表明,离子液体固定化后,其酸催化性能有明显提高,草酸二乙酯收率为84.8%,且催化剂具有较好的稳定性。  相似文献   

4.
酸性离子液体催化合成三醋酸甘油酯   总被引:2,自引:0,他引:2  
合成了[HSO3-pmim]Cl、[HSO3-pmim][H2PO4]、[HSO3-pmim][BF4]和[HSO3-pmim] [HSO4]离子液体,用1H-NMR和FT-IR对离子液体的结构进行了确定。将几种酸功能化离子液体应用于三醋酸甘油酯的合成反应中,筛选出了一种催化效果好又可以重复使用的离子液体[HSO3-pmim][HSO4]。考察了催化剂用量、原料配比和反应时间对反应的影响,得到了较佳反应条件:n(甘油)∶n(醋酸)=1∶8,催化剂用量为醇酸总质量的5.8%,反应时间6 h,反应温度(80~90) ℃。对该功能化离子液体的重复使用性进行了考察,重复使用10次后,三醋酸甘油酯的收率仍大于90%。  相似文献   

5.
离子液体催化合成环己烷1,2-二甲酸二丁酯   总被引:1,自引:0,他引:1  
以3-磺酸基丙基三乙基铵硫酸氢盐离子液体为催化剂,考察了反应时间、醇酸摩尔比、催化剂的用量对合成环己烷1,2-二甲酸二丁酯的影响及催化剂的重复利用性能。结果表明,反应时间8 h,醇与酸酐摩尔比为2.5∶1,催化剂用量为1%(以环己烷1,2-二甲酸酐质量计),反应温度150℃时,酯化率达99.2%,产品纯度为99.26%,且催化剂具有良好重复利用效果。  相似文献   

6.
于荣华  刘艳玲  乔浩  刘存礼 《现代化工》2013,33(1):73-75,77
以D-甘露醇为原料,经丙叉基保护、氧化还原、苄基保护、脱丙叉保护、醇的酰化、苄基的脱保护合成了1,2-甘油二酯,中间体和目标产物结构经过了IR和元素分析鉴定。考察了不同的萃取溶剂和相转移催化剂对重要中间体甘油醇缩丙酮合成的影响。最终采用价廉的、环境友好的乙酸乙酯作为萃取溶剂,相转移催化剂季铵盐四丁基硫酸氢铵的质量分数为0.1%时效果最佳,并选择了一锅法合成的路线。考察了缚酸剂对中间体3-氧-苄基甘油合成的影响。在最优条件下,实验选择有机碱三乙胺作为3-氧-苄基甘油合成的缚酸剂。最终1,2-甘油二酯产率达到49.3%。  相似文献   

7.
付万里  陈平  兰鲲  周明东 《精细化工》2014,31(8):1046-1052
采用水为溶剂一步法合成对甲苯磺酸吡啶离子液体([Py]Tsa),利用傅里叶红外光谱(IR),核磁共振波谱(NMR),热分析(TG-DTA)对其进行了表征。以β-萘甲醚与乙酸酐酰基化为探针反应,研究[Py]Tsa催化反应活性、确定反应条件。结果表明,在反应温度150℃,反应时间5 h,乙酸酐/β-萘甲醚摩尔比值为1.5,离子液体/β-萘甲醚质量比值为2.53的条件下,转化率最高达58.88%,2-甲氧基-1-萘乙酮作为主产物,选择性达98.28%;离子液体简单再生后可重复利用,催化活性没有明显降低。对产物进行了分离提纯,并用IR、NMR、TG-DTA进行表征,确定了反应得到的两种产物。  相似文献   

8.
采用两步法合成了[Bmim]HSO_4,[Bmim]Sb F6,Bmim]PF6,[BSmim]HSO_4,[BSmim]CF_3SO_3,[BSN222]H_2PW_12O_40,[Ph3PSO3H]HSO_4等离子液体,以离子液体及离子液体/酸性无机盐为催化剂,在90℃、混合碳四:乙酸体积比18:5、乙酸:催化剂摩尔比2、反应时间4 h条件下,催化丁烯与乙酸的酯化反应.结果表明,以[Ph_3PSO_3H]HSO_4为催化剂时,丁烯转化率、乙酸仲丁酯的选择性和收率分别达88.8%,100.0%和88.8%,远高于以浓H_2SO_4催化的转化率(73.5%)、选择性(77.7%)和收率(57.1%).以[Ph_3PSO_3H]HSO_4为催化剂的8次循环实验中,总丁烯转化率均大于88.4%,乙酸仲丁酯选择性均大于97.4%,且产物与离子液体易分离,催化效果和循环使用性能良好.  相似文献   

9.
以1-乙烯基咪唑和1-丙烯咪唑为单体,首先和溴乙酸、3-溴丙酸、5-溴戊酸和三氟甲磺酸一步反应合成酸性离子液体,然后与苯乙烯共聚,合成8种聚合酸性离子液体催化剂。采用红外光谱、热重分析和扫描电镜对其进行表征。首次研究聚合酸性离子液体对丁二酸二甲酯的合成反应的催化活性,并优化了工艺条件。结果表明,聚乙烯咪唑三氟甲磺酸(P[Vim]CF_3SO_3)为最佳催化剂,催化效果和机械强度优于市售大孔酸性树脂,且易于分离,最佳工艺条件为:反应温度87℃,酸醇比为1∶5,催化剂用量为5%(质量分数),反应4 h,丁二酸二甲酯的收率为96.5%,丁二酸二甲酯的选择性100%。重复使用5次,效果没有明显下降。  相似文献   

10.
以1-乙烯基咪唑和1-丙烯咪唑为单体,首先和溴乙酸、3-溴丙酸、5-溴戊酸和三氟甲磺酸一步反应合成酸性离子液体,然后与苯乙烯共聚,合成8种聚合酸性离子液体催化剂。采用红外光谱、热重分析和扫描电镜对其进行表征。首次研究聚合酸性离子液体对丁二酸二甲酯的合成反应的催化活性,并优化了工艺条件。结果表明,聚乙烯咪唑三氟甲磺酸(P[Vim]CF_3SO_3)为最佳催化剂,催化效果和机械强度优于市售大孔酸性树脂,且易于分离,最佳工艺条件为:反应温度87℃,酸醇比为1∶5,催化剂用量为5%(质量分数),反应4 h,丁二酸二甲酯的收率为96.5%,丁二酸二甲酯的选择性100%。重复使用5次,效果没有明显下降。  相似文献   

11.
《应用化工》2016,(5):908-911
以离子液体1-烯丙基-3-甲基咪唑氯盐([Amim]Cl)为溶剂,以咪唑类酸功能离子液体[Cnmim]HSO_4(n=2,3,4,5,6,7)为催化剂,在微波辅助加热条件下降解微晶纤维素(MCC),考察了反应温度、反应时间、催化剂用量、加水量、催化剂的哈米特酸度及种类等反应条件对MCC降解反应的影响。结果表明,酸性离子液体的催化效果与其酸性大小有关,其中[C_6mim]HSO_4的哈米特酸度值最小,酸性最强,作为催化剂时效果最佳,当[C_6mim]HSO_4的加入量为0.1 g,纤维素和催化剂的摩尔比为1∶1,反应温度为110℃,反应时间为40 min,加水量为70μL时,微晶纤维素转化率为100%,可还原糖收率为89.94%,葡萄糖收率高达46.24%。该反应使用常见的微波法,操作简单、方便、快速且无污染,与以往反应相比得到的葡萄糖收率较高,为在工业上应用提供了一种可行的方法。  相似文献   

12.
《应用化工》2022,(5):908-911
以离子液体1-烯丙基-3-甲基咪唑氯盐([Amim]Cl)为溶剂,以咪唑类酸功能离子液体[Cnmim]HSO_4(n=2,3,4,5,6,7)为催化剂,在微波辅助加热条件下降解微晶纤维素(MCC),考察了反应温度、反应时间、催化剂用量、加水量、催化剂的哈米特酸度及种类等反应条件对MCC降解反应的影响。结果表明,酸性离子液体的催化效果与其酸性大小有关,其中[C_6mim]HSO_4的哈米特酸度值最小,酸性最强,作为催化剂时效果最佳,当[C_6mim]HSO_4的加入量为0.1 g,纤维素和催化剂的摩尔比为1∶1,反应温度为110℃,反应时间为40 min,加水量为70μL时,微晶纤维素转化率为100%,可还原糖收率为89.94%,葡萄糖收率高达46.24%。该反应使用常见的微波法,操作简单、方便、快速且无污染,与以往反应相比得到的葡萄糖收率较高,为在工业上应用提供了一种可行的方法。  相似文献   

13.
基于三丁基磷和1,4-丁烷磺内酯,采用两步法合成了一种含有磺酸基团的强酸性离子液催化剂,并将此离子液体用于催化甲醇脱水反应。考察了反应温度、反应时间、催化剂用量和甲醇初始溶液浓度对反应的影响。红外光谱检测确认了离子液体的分子结构。实验结果表明,该催化剂能有效地催化甲醇脱水反应生成二甲醚,反应物中没有检测到副产物,催化剂重复使用数次活性无明显降低。  相似文献   

14.
酸性离子液体催化合成N-甲酰吗啉   总被引:2,自引:1,他引:1  
合成了7种酸性离子液体,并将其应用于催化合成N-甲酰吗啉的反应中,筛选出了一种可以重复使用的离子液体[HSO3-pmim]HSO4,并对其进行了表征。以吗啉和甲酸为原料,离子液体[HSO3-pmim]HSO4为催化剂,以一种环保的工艺合成了N-甲酰吗啉。用红外光谱对产品结构进行了分析表征,和N-甲酰吗啉标准谱图一致,用气相色谱测定产品质量分数大于99.8%。考察了影响反应的主要因素,确定了较佳反应条件:n(甲酸)∶n(吗啉)=1.15∶1,反应温度85~95℃,反应时间8.0 h。在该条件下[HSO3-pmim]HSO4重复使用7次后,没有明显消耗,N-甲酰吗啉的收率大于81.3%。  相似文献   

15.
以酸性离子液体己基甲基咪唑硫酸氢盐[n-C6Im][HSO4]为催化剂催化合成乙酸苯乙酯(PEAC)。通过对影响转化率的各种因素考察,得到最佳合成条件:2-苯乙醇与乙酸乙烯酯物质的量比为1∶1.2,离子液体催化剂用量5%(质量分数),反应温度140℃,反应时间6 h,PEAC转化率为91.8%。离子液体催化剂重复使用4次后,转化率开始缓慢下降,但补充适量硫酸后离子液体即可恢复催化活性。与传统的强酸催化剂相比,[n-C6Im][HSO4]具有合成的PEAC色泽好、催化剂易回收与重复利用的优点。  相似文献   

16.
以甲酰胺和氯丙酮等为原料合成了离子液体4-甲基-3-丁基噻唑硫酸氢盐。以aldol反应为探针,探究了离子液体催化苯甲醛与丙酮的缩合反应,并对催化剂用量、醛酮比、反应时间和催化剂重复利用等进行了考察。优化工艺条件为:n(苯甲醛)∶n(丙酮)=1.0∶1.8,催化剂用量3%(n/n),反应时间1.5 h,苄叉丙酮的收率达81.2%,催化剂重复使用5次仍可保持较高催化效果。  相似文献   

17.
杨兰 《广州化工》2012,40(13):101-102,111
制备了四种离子液体用于催化酯化柠檬酸三丁酯的合成。系统考察了酸与醇的配比、催化剂的种类、及催化剂重复使用性。结果表明,较佳催化剂为酸性功能化离子液体[HSO3-bPydin][HSO4],较佳反应条件是:酸与醇摩尔比为1∶5,催化剂用量为反应物总质量的15%,反应3 h,此条件下酯化率97%,反应后分离出的离子液体未经任何处理重复使用10次,酯化率仍为96%。  相似文献   

18.
固定化Bronsted酸性离子液体催化酯化反应   总被引:1,自引:0,他引:1       下载免费PDF全文
设计合成了1-甲基-3-丁烷磺酸咪唑硫酸氢盐([(n-Bu-SO3H)MIm][HSO4])、1-甲基-3-丁烷磺酸咪唑对甲苯磺酸盐([(n-Bu-SO3H)MIm][p-CH3C6H4SO3])和硫酸三乙胺([Et3NH][HSO4])3种Bronsted酸性离子液体,考察了其催化正己酸与乙醇酯化反应的活性,分别采用浸渍法和溶胶-凝胶法将活性最佳的离子液体[(n-Bu-SO3H)MIm][HSO4]固定在硅胶上,对固定化离子液体催化正己酸与乙醇酯化反应的性能及重复使用性能进行了比较,并采用1H NMR、元素分析和FTIR等方法对其进行了表征。研究结果表明:采用浸渍法A、浸渍法B和溶胶-凝胶法固定的离子液体的负载量(质量分数)分别为15.5 %、20.5 %和40.5 %,催化正己酸与乙醇酯化反应所得正己酸乙酯的产率分别为75.3%、92.6%和92.6%。但浸渍法制备的固定化离子液体不稳定,重复使用4次(浸渍法A)和8次(浸渍法B)后离子液体负载量分别下降到3.0 %和7.0 %,正己酸乙酯产率分别降为24.2%和64.5%;而采用溶胶-凝胶法制备的固定化离子液体重复使用10次后,离子液体的负载量为39.0%,流失很少,正己酸乙酯产率依然高达92.7%。将溶胶-凝胶法制备的固定化离子液体进一步应用于其他脂肪酸与乙醇的酯化反应,乙酯产率均在90.0%左右,表明采用溶胶-凝胶法是制备固定化离子液体催化剂的有效方法。  相似文献   

19.
采用乙腈探针法和吡啶探针法测定了离子液体的酸性,研究了离子液体的分子结构与酸类型、酸强度的相关性。结果表明,乙腈探针法和吡啶探针法均能很好地区分离子液体的酸类型(Brnsted酸或Lewis酸),并可以粗略地指示离子液体的Lewis酸强度。  相似文献   

20.
研究了离子液体催化蔗糖合成5-羟甲基糠醛的反应过程.合成并表征了N-甲基吡咯烷酮甲磺酸盐和N-甲基吡咯烷酮硫氢酸盐两种离子液体,并考察了两种离子液体在N,N-二甲基甲酰胺-溴化锂(DMF-LiBr)溶剂体系中催化蔗糖合成5-羟甲基糠醛的反应情况.结果表明,N-甲基吡咯烷酮甲磺酸盐催化效果较好,氮气保护下,在反应温度85...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号