首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《应用化工》2022,(3):684-686
采用高铁酸钾氧化法处理难降解的对氯苯酚废水,探讨高铁酸钾与对氯苯酚质量比、氧化反应时间和废水溶液pH值等因素对废水处理效果的影响。结果表明,高铁酸钾与对氯苯酚质量比为20,氧化反应时间30 min,废水溶液pH值为9时,对氯苯酚浓度为100.0 mg/L的模拟废水经过处理,剩余对氯苯酚浓度为4.7 mg/L,对氯苯酚去除率为94.3%。  相似文献   

2.
6-氯苯并二氢吡喃-4-酮的合成研究   总被引:1,自引:1,他引:0  
以对氯苯酚和3-氯丙酸为起始原料,在相转移催化剂三乙基苄基氯化铵催化下,合成对氯苯氧丙酸(1),然后用浓硫酸环化合成6-氯苯并二氢吡喃-4-酮(2)。考察了催化剂的用量、原料配比和反应时间对1收率的影响,适宜条件为:n(三乙基苄基氯化胺):n(对氯苯酚):n(3-氯丙酸):n(氢氧化钠)=0.023:1:1.3:1.3,反应时间为3h,收率为30.9%。此合成方法操作简便、安全、反应时间短且成本低。  相似文献   

3.
采用高铁酸钾氧化法处理废水中邻氯苯酚,考察了高铁酸钾与邻氯苯酚质量比、溶液pH值、反应时间对废水中邻氯苯酚去除率的影响。结果表明:邻氯苯酚去除率同高铁酸钾与邻氯苯酚的质量比、反应时间成正比,在废水中邻氯苯酚初始质量浓度为25.0 mg/L时,高铁酸钾与邻氯苯酚质量比为20,反应时间为25 min,溶液pH值为9~10的条件下,邻氯苯酚去除率最高可达95.6%。  相似文献   

4.
采用海藻酸钠-壳聚糖-活性炭(SA-CA-PAC)微胶囊固定一株对氯苯酚优势降解菌.比较了微胶囊固定化菌与悬浮菌对对氯苯酚的降解效果,同时研究了接种量,温度和pH对降解效果的影响.研究表明,微胶囊固定化菌的降解效果优于悬浮态茵,微胶囊固定化茵处理120 mg·L-1的对氯苯酚废水的最佳接种量为3 g·L-1,微胶囊固定化菌降解对氯苯酚的最适宜pH为7.0,最适宜温度为30~35℃.  相似文献   

5.
对染料废水进行电解氧化法处理,探讨电极间距、电流密度、H_2O_2用量、反应时间对染料废水色度去除率的影响。结果表明,在电极间距1 cm、电流密度12 mA/cm~2、H_2O_2用量0.3%、反应时间30 min的工艺条件下,色度2160度的1 500 mL染料废水经处理,剩余色度为68.2度,色度去除率达96.84%,满足印染行业间接排放要求。  相似文献   

6.
研究了Fe/C微电解法处理对氯硝基苯废水的影响因素和工艺条件.结果表明,影响微电解对对氯硝基苯转化率的因素按从大到小的顺序为:反应时间、pH、铁炭比;Fe/C微电解法降解对氯硝基苯废水的最佳工艺条件是:铁屑用量3~4 g·L-1,废水pH=3~4,铁炭比1~1.5,反应时间2~2.5h.在适当的反应条件下,对氯硝基苯的转化率大于80%.降解反应为一级反应.  相似文献   

7.
采用Fenton试剂对实验室模拟高浓度叔丁醇废水进行预处理,探讨了H2O2投加量、Fe2+投加量、pH及反应时间等因素对废水COD去除率的影响.结果表明,在H2O2投加量为25 mL,Fe2+投加量为0.75 g,pH为3~5,反应时间为30 min,反应温度为30~35℃的条件下处理200 mL模拟废水,COD去除率可达90%以上.  相似文献   

8.
用Fenton试剂处理丁苯橡胶废水,考察了H2O2和FeSO4的用量、初始pH值、反应时间以及反应温度对废水化学需氧量(COD)去除率的影响。结果表明,适宜的处理条件为H2O2(以1 L废水计)8 mL、FeSO4质量浓度1.0 g/L、初始pH值3~10、反应时间30 min、反应温度40℃,在此条件下废水COD的去除率可超过55%。  相似文献   

9.
稀土在印染废水降解过程中的催化作用   总被引:1,自引:0,他引:1  
用稀土La2O3-Tb2O3/O3处理模拟印染废水亚甲基蓝溶液,研究了稀土投加量、温度、反应时间及pH值对化学需氧量(COD)去除率的影响。结果表明,最佳处理条件为:取1 L模拟废水,pH=2,稀土投加量为25 mL,反应时间60 min,温度为60℃。  相似文献   

10.
Fe2O3/凹凸棒土催化氧化处理印染废水的研究   总被引:1,自引:0,他引:1  
研究由浸渍法制备负载型Fe2O3/凹凸棒土催化剂,并利用该催化剂对印染废水进行处理,探讨废水pH值、催化剂用量、反应时间等对色度去除率的影响。确定较佳反应条件:催化剂用量为0.25g,染料废水初始浓度300mg/L,染料废水pH值为7.0,过氧化氢0.6mL,反应时间2h时色度去除率为90%。  相似文献   

11.
采用两段超声波结合H_2O_2氧化处理丙烯酸废水。考察了超声波频率、功率、H_2O_2投加量、废水初始pH等对处理效果的影响。一段超声波条件:频率=120 kHz,功率=400 W,H_2O_3投加量为0.7 mL/L,废水pH值为3~5,反应时间为50 min。二段超声波条件:频率=68 kHz,功率=250 W,H_2O_2投加量为0.8 mL/L,调节废水pH值为3~5,反应时间为1 h。经氧化处理丙烯酸废水BOD_5/COD比值(B/C值)由0.28提高至0.47,经生物法降解,实现出水COD60 mg/L。  相似文献   

12.
王吉华 《辽宁化工》2022,(7):903-905+909
用消毒剂优氯净氧化降解甲基橙废水。考察了溶液pH、反应温度、反应时间、优氯净用量等因素对甲基橙废水脱色率的影响。结果表明:室温、溶液p H 5.0~8.0的条件下,1 000 mL甲基橙含量为20 mg·L-1的废水中加入80 mg优氯净,搅拌15 min,脱色率可达98%以上。  相似文献   

13.
三氯化铁除砷的工艺研究   总被引:1,自引:0,他引:1  
为了减少铁盐除砷过程中产生的危险废渣的数量,研究了三氯化铁作为除砷剂处理砷(Ⅲ)和砷(Ⅴ)废水的工艺条件,主要包括pH值、铁砷摩尔比(nFe/As)、反应时间等.结果表明,用三氯化铁处理含砷(Ⅲ)1647.8 mg·L-1废水的最佳工艺条件为:pH=9、反应时间1h、nFe/As=2;处理含砷(Ⅴ) 3697.2 mg· L-1废水的最佳工艺条件为:pH=8、反应时间1h、nFe/As=2.此外,阳离子型絮凝剂PAM209cc适合于铁砷沉淀物的沉降,对砷(Ⅲ)废水和砷(Ⅴ)废水的最佳投加量分别为40 mL· L-1、20 mL· L-1.  相似文献   

14.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

15.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

16.
《煤化工》2021,49(3)
针对有机工业废水COD难以降解的问题,提出了Fenton-活性炭联合处理工艺,探讨了溶液pH值、FeSO_4投入量、H_2O_2投入量、反应时间和活性炭加入量对废水中COD去除效果的影响。结果表明,综合考虑废水COD的去除率和操作成本,在pH=4、FeSO_4投入量为2.0 g、H_2O_2投入量为1.0 mL、反应时间为50 min、活性炭加入量为0.15 g时,可使处理效果最佳。针对废水水质,设计了Fenton-活性炭联合处理装置,其运行效果稳定,废水COD去除率超过59%,处理后的废水COD达到排放标准。  相似文献   

17.
二氧化氯催化氧化处理医药废水   总被引:2,自引:0,他引:2  
通过二氧化氯催化氧化法处理医药苯酚废水氧化降解的实验研究,以废水COD变化作为评价氧化效率的重要指标,处理浓度为1 450mg/L的医药苯酚废液,考察了常压下,温度、溶液pH值、催化剂使用量、二氧化氯用量、氧化反应时间等因素对医药苯酚废水处理效果的影响.得到了二氧化氯处理医药苯酚废水适宜的反应条件:温度为室温条件;溶液pH值调整在5~8之间:催化剂使用量为2 g/100 mL废水;浓度为1.76%的稳定二氧化氯溶液5 mL:降解反应时间为1 h.最终降解率达到70%.  相似文献   

18.
铁炭微电解-Fenton试剂联合氧化深度处理印染废水的研究   总被引:10,自引:0,他引:10  
采用铁炭微电解-Fenton联合氧化技术对印染废水生化处理的出水进行深度处理,考察了pH值、H2O2投加量、铁炭体积比、反应时间对处理效果的影响。结果表明,最佳反应条件为:pH2~3,H2O2用量3.2 mL/L,铁炭体积比为1∶1,反应时间为90 min,COD的去除率达到90%以上,色度去除率为99%,盐度去除率为64%,各项指标均达到了印染废水的回用要求。  相似文献   

19.
研究了膨润土负载Fe~0作为催化剂的非均相芬顿体系对含菊酯类农药废水的处理效果。通过单因素实验探究了pH、双氧水的投加量、催化剂的投加量、反应时间、反应温度5个因素对处理效果的影响;并通过设计正交实验探究最佳反应条件。结果表明最佳处理条件为:pH=3、双氧水投加量为0.3 mL、催化剂投加量为0.5 g、反应温度为30℃、反应时间为60 min,对高效氯氟氰菊酯模拟废水中COD_(Cr)的去除率达到64.28%。在此最优条件下对催化剂进行回收实验,结果表明,催化剂的可回收利用性良好,重复使用2次后的去除效果仍保持在59%左右。  相似文献   

20.
林伟帮  李琪琪  杨贺群  谭毅  蒋伟芬  陈英  陈东 《广东化工》2012,39(16):112-113,115
采用曝气微电解-双氧水工艺处理炼厂焦化废水,考察了废水pH、反应时间、双氧水投加量以及空气流量等因素对废水COD、NH3-N2、除率和BOD/COD比值的影响。结果表明,在pH5~7、铁稻用量100g/L、双氧水(浓度为30%)用量2mL/L,反应时间1.5h、空气流量60L/h(实验废水量150mL)的条件下,COD、NH3-N的去除率分别为37.6%和299%,BOD/COD比值从0.25提高到0.66,废水可生化性提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号