首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
High density lipoproteins (HDL) were recently demonstrated in an enterocyte model (CaCo-2 cells) to mediate reverse cholesterol transport by retroendocytosis. The present study was carried out to define the role of the major HDL apoproteins (apo) A-I and apo A-II in this pathway. HDL3 was fractionated by heparin affinity chromatography into the two main fractions containing either apo A-I only (fraction A) or both apo A-I and apo A-II (fraction B). In addition, liposomes were reconstituted from purified apo A-I or apo A-II and dimyristoyl phosphatidylcholine. The cell binding properties and cholesterol efflux potential were studied in the lipoprotein fractions and the liposomes. Both fractions exhibited similar maximal binding capacities of 4427 (A) and 5041 (B) ng/mg cell protein, but their dissociation constants differed (40.5 and 167.7 micrograms/mL, respectively). Fraction A induced cholesterol efflux and stimulated cholesterol synthesis more than did fraction B. Fraction A mobilized both cellular free and esterified cholesterol, whereas fraction B preferentially mobilized cholesteryl esters. Liposomes, containing either apo A-I or apo A-II, showed specific binding, endocytosis and endosomal transport, and were released as intact particles. Apo A-I liposomes also mediated cholesterol efflux. In conclusion, there is evidence that the HDL3 subfractions A and B, as well as reconstituted liposomes containing either apo A-I or apo A-II, were specifically bound and entered a retroendocytosis pathway which was directly linked to cholesterol efflux. Quantitatively, the apo A-I subfraction appeared to play the dominant role in normal enterocytes. The apo A-II content of fraction B was related to the mobilization of cholesteryl esters.  相似文献   

2.
Obesity is associated with dyslipidaemia characterised by increased fasting triglyceride and decreased high-density lipoprotein (HDL) concentrations. Causes for obesity-associated dyslipidaemia include insulin resistance, excessive caloric intake, increased free fatty acid production and disturbances in the counter-regulatory hormones. We examined the relationships between lipid parameters and obesity before and after adjustment of insulin resistance in 902 Hong Kong Chinese men. After adjustment for age, smoking and insulin resistance, increasing body mass index (BMI) and waist-to-hip ratio (WHR) remained closely associated with increased concentrations of triglyceride and apolipoprotein B (apo B), increased ratios between low-density lipoprotein (LDL) and HDL (LDL/HDL), and that between apo B and LDL (apo B/LDL), increased fasting and 2-h plasma glucose and insulin, as well as decreased concentrations of HDL, HDL2 and apolipoprotein A-I (apo A-I). On stepwise multiple regression analysis using age, BMI, WHR, insulin resistance and fasting plasma glucose as independent variables, BMI and WHR were the major determinants for the variance of triglyceride, HDL and its subfractions, LDL/HDL, apo B and apo B/LDL. Age was the most important predictor for total cholesterol and LDL. Insulin resistance only explained less than 1% of the variance in triglyceride and apo B. This was compared to a variance between 10 and 16% in these parameters as explained by BMI and/or WHR. In conclusion, obesity is associated with dyslipidaemia in Chinese men, characterised by increased plasma triglyceride, apo B, LDL/HDL, apo B/LDL, and decreased HDL, HDL2 and apo A-I concentrations. Obesity independent of insulin resistance, in particular central adiposity as reflected by increased WHR, was the most important independent variable for many of these lipid abnormalities. Our results emphasised the multifactorial linkage between obesity and dyslipidaemia.  相似文献   

3.
Hair cells, the sensory receptors of the mammalian inner ear, have long been thought to be produced only during embryogenesis, and postnatal hair cell loss is considered to be irreversible and is associated with permanent hearing and balance deficits. Little is known about the factors that regulate hair cell genesis and differentiation. The mitogenic effects of insulin and transforming growth factor alpha (TGFalpha) were assayed in vivo in normal and drug-damaged rat inner ear. Tritiated thymidine and autoradiographic techniques were used to identify cells synthesizing DNA. Simultaneous infusion of TGFalpha and insulin directly into the inner ear of adult rats stimulated DNA synthesis in the vestibular sensory receptor epithelium. New supporting cells and putative new hair cells were produced. Infusion of insulin alone or TGFalpha alone failed to stimulate significant DNA synthesis. These results suggest that exogenous growth factors may have utility for therapeutic treatment of hearing and balance disorders in vivo.  相似文献   

4.
BACKGROUND: Glomerulonephritis is characterized by the accumulation of extracellular matrix protein within the glomerulus. This process, when allowed to proceed unimpeded, leads to glomerulosclerosis and eventually to cessation of glomerular filtration. There is evidence that protein kinase C (PKC) activation plays an important role in mediating at least some of the effects of TGF-beta in vascular smooth-muscle cells. The current study was undertaken to determine whether PKC activity is required for both TGF-beta and angiotensin II (Ang II) to induce mesangial cell matrix protein secretion. METHODS: PKC was inhibited by two separate methods, and [3H]thymidine incorporation was assessed in both the presence and the absence of PKC inhibition. Conditioned medium from cells stimulated with TGF-beta or Ang II was collected and analysed for secreted matrix proteins and sulphated proteins by SDS-polyacrylamide gel electrophoresis and western blotting. RESULTS: Twenty-four-hour incubation of rat mesangial cells with phorbol-12-myristate-13-acetate (PMA) reduced total PKC activity to basal levels. Both TGF-beta and Ang II were mitogenic in mesangial cells, and chronic PMA pre-incubation inhibited this DNA synthesis. TGF-beta-and Ang-II-induced sulphated protein secretion into conditioned medium was markedly attenuated in PKC-downregulated cells. Secretion of the specific matrix proteins laminin and fibronectin by mesangial cells stimulated with either TGF-beta or Ang II was also diminished in PKC-downregulated cells and in cells pre-incubated with the specific PKC inhibitor, chelerythrine. There was no evidence of generalized cell toxicity or decreased non-specific protein synthesis caused by these PKC inhibitors. CONCLUSIONS: PKC is a key intermediary in the process by which TGF-beta and Ang II cause DNA synthesis and mesangial cell matrix protein production. Thus, PKC inhibitors deserve further study as potential therapeutic agents for a variety of glomerular diseases.  相似文献   

5.
Estrogen therapy increases plasma HDL levels, which may reduce cardiovascular risk in postmenopausal women. The mechanism of action of estrogen in influencing various steps in hepatic HDL and apolipoprotein (apo) A-I synthesis and secretion are not fully understood. In this study, we have used the human hepatoblastoma cell line (Hep G2) as an in vitro model system to delineate the effect of estradiol on multiple regulatory steps involved in hepatic HDL metabolism. Incubation of Hep G2 cells with estradiol resulted in the following statistically significant findings: (1) increased accumulation of apoA-I in the medium without affecting uptake/removal of radiolabeled HDL-protein; (2) accelerated incorporation of [3H]leucine into apoA-I; (3) selective increase in [3H]leucine incorporation into lipoprotein (LP) A-I but not LP A-I+A-II HDL particles (HDL particles without and with apoA-II, respectively); (4) increased ability of apoA-I-containing particles to efflux cholesterol from fibroblasts; (5) stimulated steady state apoA-I but not apoA-II mRNA expression; and (6) increased newly transcribed apoA-I mRNA message without effect on apoA-I mRNA half-life. The data indicate that estradiol stimulates newly transcribed hepatic apoA-I mRNA, resulting in a selective increase in LP A-I, a subfraction of HDL that is associated with decreased atherosclerotic cardiovascular disease, especially in premenopausal women.  相似文献   

6.
The mitogenic activities of low (LDL)- and high (HDL)-density lipoproteins have been examined in cultures of human vascular smooth muscle cells (VSMC). LDL and HDL3 dose-dependently (EC50 values approximately 50 micrograms/ml) stimulated DNA and protein synthesis ([3H]-thymidine and [3H]-leucine incorporation, respectively) in the absence of exogenously added mitogens. The synthetic responses of VSMC to combinations of LDL and HDL3 were additive, indicating that each lipoprotein mediates discrete effects. LDL or HDL3 promoted VSMC proliferation under strict mitogen-free conditions, but this growth response was not sustained. VSMC exposed to combinations of lipoproteins (either LDL or HDL3) and growth factors (either PDGF-BB, EGF, bFGF or IGF) exhibited synergistic DNA synthesis responses. In the combined presence of PDGF-BB and either LDL or HDL3, VSMC proliferation was sustained. Anionized lipoprotein preparations (oxidized, acetylated, carbamylated or malonimylated) also stimulated DNA and protein synthesis. Since the antioxidant beta-hydroxylated toluene did not block the effect of native LDL on DNA synthesis, and fucoidin, a specific competitor for the 'scavenger' receptor, did not inhibit oxidized LDL-induced DNA synthesis, activation of mitogenic signals by lipoproteins does not depend on lipid peroxidation. Rather, the apparent intrinsic mitogenic potential of lipoproteins may depend upon their direct activation of replication-coupled signal transduction systems.  相似文献   

7.
Apolipoprotein (apo) A-II is the second most abundant apolipoprotein in high density lipoprotein (HDL). To study its role in lipoprotein metabolism and atherosclerosis susceptibility, apo A-II knockout mice were created. Homozygous knockout mice had 67% and 52% reductions in HDL cholesterol levels in the fasted and fed states, respectively, and HDL particle size was reduced. Metabolic turnover studies revealed the HDL decrease to be due to both decreased HDL cholesterol ester and apo A-I transport rate and increased HDL cholesterol ester and apo A-I fractional catabolic rate. The apo A-II deficiency trait was bred onto the atherosclerosis-prone apo E-deficient background, which resulted in a surprising 66% decrease in cholesterol levels due primarily to decreased atherogenic lipoprotein remnant particles. Metabolic turnover studies indicated increased remnant clearance in the absence of apo A-II. Finally, apo A-II deficiency was associated with lower free fatty acid, glucose, and insulin levels, suggesting an insulin hypersensitivity state. In summary, apo A-II plays a complex role in lipoprotein metabolism, with some antiatherogenic properties such as the maintenance of a stable HDL pool, and other proatherogenic properties such as decreasing clearance of atherogenic lipoprotein remnants and promotion of insulin resistance.  相似文献   

8.
We examined the binding properties and mitogenic effects of U46619, using cultured vascular smooth muscle cells (VSMCs), by ligand-binding assay, measuring [3H]thymidine and [3H]leucine incorporation, checking with flow cytometry, and counting the cell number. The U46619-activated mitogenic signal-transduction pathway was assessed by measuring formation of inositol monophosphate (IP); [Ca2+]i; mitogen-activated protein kinase (MAPK), MAPK kinase (MAPKK), and p74raf-1 activities; and GTP-bound Ras. [3H]U46619 bound to cultured VSMCs from Wistar-Kyoto (WKY) rats at a single class of site (Kd: 15.5 +/- 2.6 nmol/L). However, it bound to VSMCs from spontaneously hypertensive rats (SHRs) at two classes of sites (Kd: 2.3 +/- 0.6 nmol/L and 1.4 +/- 0.5 mumol/L). U46619 increased DNA and protein synthesis, cell number, IP formation, [Ca2+]i, and MAPK and MAPKK activities, with EC50 values close to its Kd value for the low-affinity binding site in VSMCs from SHR. Prostaglandin (PG) E2 and PGF2 alpha showed little of such mitogenic effects. All these effects of U46619 were inhibited by SQ29548, staurosporine, or pretreatment of VSMCs with phorbol 12-myristate 13-acetate for 24 hours. However, U46619 stimulation did not lead to a significant increase in the Ras-GTP complex or p74raf-1 activity. In conclusion, the mitogenic effect of U46619 appears to be mediated via the activation of low-affinity thromboxane binding sites that trigger phosphoinositide hydrolysis and activate the MAPK pathway, leading to DNA synthesis and cell proliferation.  相似文献   

9.
Apolipoprotein A-I (apo A-I) is the most abundant protein in high-density lipoprotein (HDL) particles, and it plays an important role in HDL metabolism. Both apo A-I and HDL cholesterol (HDL-C) levels are inversely associated with risk of cardiovascular disease. Segregation analyses suggest apo A-I levels are under the control of one or more major loci. Since HDL particles are heterogeneous in their composition and size, genetic influence on its subfractions (i.e., HDL2 and HDL3) could vary. A previous report showed evidence of a major locus controlling HDL3-C levels in a subset of the current study population. Because quantitative trait loci involved in complex diseases are likely to have pleiotropic effects on several related traits, it is possible to have a common major gene involved in regulating apo A-I and HDL3-C levels. We performed a bivariate segregation analysis of apo A-I and HDL3-C levels in 1,006 individuals from 137 families ascertained through probands undergoing elective, diagnostic coronary angiography at the Johns Hopkins Hospital. The results showed significant genetic correlation between these two traits, but the hypothesis of a common major gene was rejected. Bivariate segregation analysis favored a model with two genes controlling apo A-I and a third gene independently controlling HDL3-C, and the genetic correlation between these two traits is due to residual additive polygenes. Overall, results from this study suggest that there are distinct genetic mechanisms for apo A-I and HDL3-C levels. Future studies, especially linkage analysis, should consider distinct genetic mechanisms and multiple major gene loci.  相似文献   

10.
11.
Multiplication stimulating activity (MSA) has been purified from the conditioned media of rat liver cells in culture by a modification of the procedure of Dulak and Temin. Purified MSA stimulates [3H] thymidine incorporation into DNA in subconfluent, serum starved 3T3 cells. Cell cycle analysis by the flow microfluorometer shows that the [3H] thymidine incorporation data reflects DNA synthesis. MSA also stimulates the multiplication of serum starved subconfluent 3T3 cells. MSA is approximately 10-fold less active in 3T3 cells than in chick embryo fibroblasts in stimulating [3H] thymiding incorporation into DNA. MSA causes a 2--10-fold increase in ornithine decarboxylase (ODC) activity in 3T3 cells and the dose response curve parallels the dose response curve for [3H] thymidine incorporation into DNA. The Km of ODC for ornithine is 0.12 mM. There is a 30% decrease in the activity of ornithine transaminase (OTA) during the time period in which MSA causes an increase in ODC activity. Insulin also stimulates [3H] thymidine incorporation into DNA, cell multiplication and ODC activity over the same concentration range as shown for MSA, however, the extent of stimulation by insulin is less than that observed following MSA addition.  相似文献   

12.
Arginine vasopressin (AVP) induces cell proliferation and hypertrophy; however, the human receptor subtype and the intracellular signaling pathways responsible for this mitogenic activity remain unclear. Experiments were conducted to determine which AVP receptor is linked to mitogen-activated protein (MAP) kinase activation and the mitogenic effect seen in Chinese hamster ovary (CHO) cells expressing human V1A or V1B receptors. Adding AVP to CHO cells transfected with human V1A or V1B cDNA significantly and concentration-dependently induced activation of MAP kinase and increased DNA synthesis, as measured by [3H]thymidine incorporation. These effects were inhibited by AVP receptor antagonists and the potency order of antagonists in vitro was similar to that observed in radioligand binding assays. These results suggest that AVP induces the MAP kinase cascade leading to cell proliferation through either human V1A or V1B receptors, and that these cloned, expressed AVP receptors may prove an invaluable tool for probing the physiologic and pathophysiologic effects of AVP.  相似文献   

13.
Glycosyl-phosphatidylinositol-specific phospholipase D (GPI-PLD) is an amphiphilic protein which, in serum, is associated with high-density lipoproteins (HDL). It is shown that the major component of the HDL fraction, apolipoprotein A-I (apo A-I), is responsible for this association. In the absence of apo A-I, purified GPI-PLD occurred as virtually inactive aggregates which became disaggregated by apo A-I. The enzyme/apo A-I complex efficiently hydrolyzed the solubilized GPI-anchored substrate, acetylcholinesterase. Triton X-100 was also able to dissociate aggregated GPI-PLD, however, it strongly inhibited enzyme activity at detergent concentrations above the critical micellar concentration.  相似文献   

14.
Selective uptake of high-density lipoprotein (HDL)-associated cholesteryl esters (CE), i.e. lipid uptake independent of HDL particle uptake, delivers CE to the liver and steroidogenic tissues in vivo and in vitro. From human plasma HDL, two major subpopulations of particles can be isolated: one contains both apolipoprotein (apo) A-I and apo A-II (designated LpA-I:A-II) as dominant protein components, whereas in the other apo A-II is absent (LpA-I). In this study, selective CE uptake from LpA-I and LpA-I:A-II by cultured cells was investigated. LpA-I and LpA-I:A-II were isolated by immunoaffinity chromatography from human plasma high-density lipoprotein3 (HDL3, d = 1.125-1.21 g/ml) and both particles were radiolabeled in the protein (125I) as well as in the CE moiety ([3H]cholesteryl oleyl ether ([3H]CEt)). Several control experiments validated the labeling methodology applied. To investigate selective CE uptake, human Hep G2 hepatoma cells, human hepatocytes in primary culture and human skin fibroblasts were incubated in medium containing doubly radiolabeled LpA-I or LpA-I:A-II particles. Thereafter cellular tracer content was determined. For each cell type the rate of apparent lipoprotein particle uptake according to the lipid tracer ([3H]CEt) was in substantial excess over that due to the protein tracer (125I), demonstrating selective CE uptake from LpA-I as well as from LpA-I:A-II. This difference in uptake between [3H]CEt and 125I, i.e. the rate of apparent selective CE uptake, was significantly higher for LpA-I compared to LpA-I:A-II, and this was dose- as well as time-dependent. Thus in human hepatic cell and fibroblasts, CE are selectively taken up to a higher extent from LpA-I compared to LpA-I:A-II. These results may suggest that LpA-I particles of the human plasma HDL fraction may be those lipoproteins which more efficiently deliver CE to the liver via the selective uptake pathway whereas LpA-I:A-II may play a less important role.  相似文献   

15.
Apolipoprotein A-I (apo A-I), a major apolipoprotein synthesized by liver and intestine to facilitate transport of plasma lipids as lipoproteins, has been detected also in the avian sciatic nerve. The mRNA and protein levels of apo A-I have been shown to increase during the period of rapid myelination (LeBlanc et al.: J Cell Biol 109:1245-1256, 1989). In order to assess the synthesis of apo A-I protein and the processing of apo A-I isoforms during development, endoneurial slices of avian sciatic nerves from chicks during active myelination at 15 and 17 days embryonic and 1 day posthatch age were incubated with [35]S-methionine. The incubations were fractionated into secreted and intracellular fractions, and incorporation of the label was assessed for apo A-I protein. The pattern of labeling of Po protein, as a marker of myelination, was also determined in the intracellular and compact myelin fractions. Methionine incorporation into Po protein was highest in the intracellular compartment at the 15-day embryonic stage and decreased thereafter, with a corresponding increase in the myelin fraction. During these developmental periods, the levels of nascent apo A-I increased in both the secreted and intracellular fractions. The synthesis of apo A-I specifically increases in the secreted fraction compared with total protein synthesis. The processing of the pro-apo A-I is also developmentally regulated. In the intracellular compartment, there are approximately equal proportions of the acidic and basic isoforms. However, with increasing age, a higher proportion of the apo A-I is secreted as acidic isoforms. It is concluded that the secretion and processing of apo A-I is developmentally regulated in the chick sciatic nerve, in parallel with the process of active myelination.  相似文献   

16.
Insulin has pleiotropic effects on the regulation of cellular growth, differentiation, and metabolism. The biochemical events ultimately leading to cell proliferation after insulin treatment have been demonstrated in detail by numerous research groups. However, depending on cell types, it has been shown that insulin has various effects on cell proliferation. Therefore, we attempted to more critically evaluate the effect of insulin on cell proliferation in 3T3 L1 fibroblasts. In this study, we investigated insulin's effect on cell proliferation by using [3H]thymidine incorporation, flow cytometry, and cell counting. In 3T3 L1 fibroblasts studied in 0.5% serum, insulin induced a two-fold increase in [3H]thymidine incorporation over at 48 h, and the maximal rate of DNA synthesis was observed during 8-12 h incubation. The flow cytometric analysis also showed that insulin increased the cell population in the S phase. After insulin treatment for 48 h, cell numbers increased approximately 45% in comparison with 0.5% serum control. Cell division was found to occur only once in 60 h after staining 3T3 L1 fibroblasts with carboxyfluorescein diacetate succinimidyl ester (CFSE). Taken together, this data indicates that insulin stimulated the transit from the G0/G1 to S phase, progressed the cell cycle through the G2/M phase, and increased the cell number. However, under our experimental conditions, cells divided only once in 60 h in the presence of insulin.  相似文献   

17.
In different experimental models, retinoid has been shown to stimulate or suppress mitogenesis in cultured cells. The mechanisms underlying this seemingly paradoxical activity remain only partially understood. We have examined the ability of all-trans retinoic acid (ATRA), as well as a number of synthetic retinoids, either alone or in the presence of a mitogenic stimulus (i.e., endothelin), to regulate DNA synthesis and cell replication in cultured rat aortic smooth muscle cells. ATRA alone stimulates [3H]thymidine incorporation (approximately twofold) and increases cell number (approximately twofold) in these cultures but suppresses [3H]thymidine incorporation and reduces cell number in cultures treated with endothelin. The reduction in endothelin-stimulated DNA synthesis correlates closely with the ability of ATRA to inhibit endothelin-stimulated extracellular signal-regulated kinase but not c-Jun NH2-terminal kinase activity. Activation of mitogenesis, seen in the presence of ATRA alone, was independent of extracellular signal-regulated kinase activation but correlated well with increased expression of cyclin D1 mRNA and protein. Concomitant activation of the cdk inhibitor p21 led to truncation of ATRA's mitogenic activity at higher doses of ligand. Collectively, these data indicate that the role of retinoids in the regulation of mitogenesis in vascular smooth muscle is complex. Under quiescent conditions they activate mitogenesis, while in the presence of growth stimulation, as is frequently seen with vasculopathic conditions, they suppress mitogenesis. It appears that independent circuitry is involved in signaling each of these effects.  相似文献   

18.
Since endogenous vasoconstrictors promote mesangial cell growth and increase the biosynthesis of antiproliferative prostaglandins, the effects of cyclooxygenase inhibition on mesangial cell proliferation should be strongly dependent on the prevailing levels of neuroendocrine vasoconstrictors. We compared the effects of indomethacin (10(-6) M), a cyclooxygenase inhibitor, on [3H]thymidine incorporation by cultured rat mesangial cells in the presence of various combinations of angiotensin II (10(-10) M), [Arg8]vasopressin (10(-11) M), (-)-norepinephrine (10(-8) M) and endothelin-1 (10(-11) M). Indomethacin did not enhance [3H]thymidine incorporation in cells treated with each individual vasoconstrictor, or in cells treated with two-way combinations with the exception of modestly increased [3H]thymidine incorporation in cells treated with angiotensin II + (-)-norepinephrine or [Arg8]vasopressin + (-)-norepinephrine. In contrast, in cells treated with any three-way or the four-way combination, indomethacin markedly increased [3H]thymidine incorporation. Importantly, a highly significant interaction (P<0.0001) was observed for thymidine incorporation between the number of vasoconstrictors present and indomethacin treatment, thus demonstrating that cyclooxygenase inhibition reveals a synergistic action of vasoconstrictors on the DNA synthesis in mesangial cells.  相似文献   

19.
Apolipoprotein A-I (apo A-I) and apolipoprotein A-II (apo A-II) represent 80 90% of the protein content of high density lipoproteins (HDL). Previously we have identified a Finnish family with an apo A-I variant (Lys107-->0) associated with reduced plasma HDL cholesterol level and decreased lipoprotein (Lp)(AI w AII) concentration compared to unaffected family members. To determine the in vivo metabolism of apo A-I and apo A-II in the carriers of apo A-I (Lys107-->0) variant we radioiodinated normal apo A-I with 125I and apo A-II with 131I and compared the kinetic data of two heterozygous apo A-I(Lysl07-->0) patients (HDL cholesterol leves 0.31 and 0.69 mmol/l) to that of eight normolipidemic, healthy control subjects. Plasma radioactivity curves of 125I-labelled normal apo A-I of the patients demonstrated accelerated clearance of apo A-I compared to control subjects. In the two patients the fractional catabolic rates (FCR) of apo A-I were 0.347/day and 0.213/day, respectively, while the mean FCR of apo A-I of the control subjects was 0.151 +/- 0.041/day. Similarly, the plasma decay curves of the 131I-labelled apo A-II showed more rapid clearance of apo A-II in the two patients than in control subjects. The FCR of apo A-II in the two patients were 0.470/day and 0.234/day, while the mean FCR of apo A-II in control subjects was 0.154 +/- 0.029/day. The calculated production rates of apo A-I were similar in patients and in control subjects, and the production rates of apo A-II were significantly higher in patients than in control subjects. Our results show that the Lp(AI w AII) deficiency in patients with the apo A-I(Lys107-->0) is associated with increased fractional catabolic rates of normal apo A-I and apo A-II, while the production rates of these apolipoproteins are normal (apo A-I) or slightly increased (apo A-II).  相似文献   

20.
Non-insulin-dependent diabetes mellitus, obesity, and essential hypertension are associated with hyperinsulinemia that results from insulin resistance and insulin has been reported to accelerate atherosclerosis. We studied the effects of insulin and insulin-like growth factor-1 (IGF-1) on the growth of porcine vascular smooth muscle cells and on the synthesis of extracellular matrix. The cells were cultured 3-8 changes of Dulbecco's modified Eagle's medium (DMEM) with 10% FCS. Subconfulent cells were put in wells 1 x 10(4) or 1 x 10(5) cells/well in DMEM with or without insulin or IGF-1. The number of cells was counted, and protein and DNA synthesis, expression of genes for collagen alpha1(1), and collagen synthesis were measured. Insulin (0, 16, and 160 nM) and IGF-1 (0, 1, 31, and 13.1 nM) increased number of cells by 50% and 40%, in a dose-dependent manner. Protein and DNA synthesis were also increased by insulin (3.8 and 3.0 times) and by IGF-1 (3.9 and 1.8 time). Collaged protein synthesis was increased 2.3-fold by IGF-1 at 13.1 nM, and insulin (16,000 nM) caused a 26.5-fold increase. Levels of collagen alpha1(1) mRNA were also increased by both insulin and IGF-1. These results suggest that insulin and IGF-1 can cause vascular hyperplasia associated with increased collagen synthesis, which indicates that insulin, IGF-1, or both may have an important role in vascular growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号