首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eukaryotic translation initiation factor 2 (eIF-2) is a heterotrimer composed of three subunits designated alpha, beta, and gamma. These proteins exist in equimolar amounts in the cell and have not been detected as isolated subunits. Our research examines the basis of their balanced synthesis. Northern analysis of K562 cell mRNA revealed that eIF-2 beta was five times more abundant than eIF-2 alpha. However, immunoprecipitation of pulse-labeled K562 cells showed an equimolar rate of synthesis of eIF-2 alpha and -beta despite the 5-fold difference in the size of their mRNA pools. Addition of equal amounts of synthetic capped mRNA for eIF-2 alpha and eIF-2 beta to an in vitro translation reaction produced five times more eIF-2 alpha protein than eIF-2 beta. Determination of the polysome profile for alpha and beta mRNA in K562 cells indicated eIF-2 alpha was translated more efficiently than eIF-2 beta. Substitution of either the initiation codon context or the leader of the beta mRNA for that of alpha had only a minor effect on the translational efficiency of beta. Comparison of the rate of ribosomal elongation for the two mRNAs indicated that ribosomes associated with the beta mRNA elongate at a rate 4-fold less than that of eIF-2 alpha. Thus, the balanced translation of alpha and beta mRNA is primarily the result of a 4-fold difference in the rate of ribosomal elongation.  相似文献   

2.
As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.  相似文献   

3.
In heme-deficient reticulocytes and their lysates, a heme-regulated inhibitor of protein synthesis is activated; this inhibitor is a cyclic AMP-independent protein kinase that specifically phosphorylates the alpha subunit of the eukaryotic initiation factor 2 (eIF-2 alpha). Heme regulates this kinase by inhibiting its activation and activity. The purified heme-regulated kinase (HRI) undergoes autophosphorylation; at least 3 mol of phosphate can be incorporated per HRI subunit (Mr 80,000). The phosphorylation of HRI, its eIF-2 alpha kinase activity, and its ability to inhibit protein synthesis are diminished by hemin (5 microM) and increased by N-ethylmaleimide (MalNEt). Treatment of MalNEt-activated HRI with hemin reduces its autophosphorylation and its ability to inhibit protein synthesis . These findings demonstrate a correlation of the phosphorylation of HRI, its eIF-2 alpha kinase activity, and its inhibition of protein synthesis. The mechanism of hemin regulation of HRI activity was studied by examining the binding of hemin to purified HRI. Significant binding was demonstrable by difference spectroscopy which revealed a pronounced shift in the absorption spectrum of hemin with the appearance of a peak at 418 nm, a shift similar to that observed with proteins known to bind hemin. These findings are consistent with a direct effect of hemin on HRI.  相似文献   

4.
In herpes simplex virus-infected cells, viral gamma134.5 protein blocks the shutoff of protein synthesis by activated protein kinase R (PKR) by directing the protein phosphatase 1alpha to dephosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2alpha). The amino acid sequence of the gamma134.5 protein which interacts with the phosphatase has high homology to a domain of the eukaryotic protein GADD34. A class of compensatory mutants characterized by a deletion which results in the juxtaposition of the alpha47 promoter next to US11, a gamma2 (late) gene in wild-type virus-infected cells, has been described. In cells infected with these mutants, protein synthesis continues even in the absence of the gamma134.5 gene. In these cells, PKR is activated but eIF-2alpha is not phosphorylated, and the phosphatase is not redirected to dephosphorylate eIF-2alpha. We report the following: (i) in cells infected with these mutants, US11 protein was made early in infection; (ii) US11 protein bound PKR and was phosphorylated; (iii) in in vitro assays, US11 blocked the phosphorylation of eIF-2alpha by PKR activated by poly(I-C); and (iv) US11 was more effective if present in the reaction mixture during the activation of PKR than if added after PKR had been activated by poly(I-C). We conclude the following: (i) in cells infected with the compensatory mutants, US11 made early in infection binds to PKR and precludes the phosphorylation of eIF-2alpha, whereas US11 driven by its natural promoter and expressed late in infection is ineffective; and (ii) activation of PKR by double-stranded RNA is a common impediment countered by most viruses by different mechanisms. The gamma134.5 gene is not highly conserved among herpesviruses. A likely scenario is that acquisition by a progenitor of herpes simplex virus of a portion of the cellular GADD34 gene resulted in a more potent and reliable means of curbing the effects of activated PKR. US11 was retained as a gamma2 gene because, like many viral proteins, it has multiple functions.  相似文献   

5.
Phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) is a common cellular mechanism to limit protein synthesis in stress conditions. Baculovirus PK2, which resembles the C-terminal half of a protein kinase domain, was found to inhibit both human and yeast eIF2alpha kinases. Insect cells infected with wild-type, but not pk2-deleted, baculovirus exhibited reduced eIF2alpha phosphorylation and increased translational activity. The negative regulatory effect of human protein kinase RNA-regulated (PKR), an eIF2alpha kinase, on virus production was counteracted by PK2, indicating that baculoviruses have evolved a unique strategy for disrupting a host stress response. PK2 was found in complex with PKR and blocked kinase autophosphorylation in vivo, suggesting a mechanism of kinase inhibition mediated by interaction between truncated and intact kinase domains.  相似文献   

6.
Eukaryotic translation initiation factor 2 (eIF-2) comprises three non-identical subunits alpha, beta and gamma. In vitro, eIF-2 binds the initiator methionyl-tRNA in a GTP-dependent fashion. Based on similarities between eukaryotic eIF-2gamma proteins and eubacterial EF-Tu proteins, we previously proposed a major role for the gamma-subunit in binding guanine nucleotide and tRNA. We have tested this hypothesis by examining the biochemical activities of yeast eIF-2 purified from wild-type strains and strains harboring mutations in the eIF-2gamma structural gene (GCD11) predicted to alter ligand binding by eIF-2. The alteration of tyrosine 142 in yeast eIF-2gamma, corresponding to histidine 66 in Escherichia coli EF-Tu, dramatically reduced the affinity of eIF-2 for Met-tRNAi(Met) without affecting the k(off) value for guanine nucleotides. In contrast, non-lethal substitutions at a conserved lysine residue (K250) in the putative guanine ring-binding loop increased the off-rate for GDP, thereby mimicking the function of the guanine nucleotide exchange factor eIF-2B, without altering the apparent dissociation constant for Met-tRNAi(Met). For eIF-2[gamma-K250R], the increased off-rate also seen for GTP was masked by the presence of Met-tRNAi(Met) in vitro. In vivo, increasing the dose of the yeast initiator tRNA gene suppressed the slow-growth phenotype and reduced GCN4 expression in gcd11-K250R and gcd11-Y142H strains. These studies indicate that the gamma-subunit of eIF-2 does indeed provide EF-Tu-like function to the eIF-2 complex, and further suggest that the level of Met-tRNAi(Met) is critical for maintaining wild-type rates of initiation in vivo.  相似文献   

7.
Protein synthesis plays an important role in the viability and function of the cell. There is evidence indicating that Ca2+ may be a physiological regulator of the translational process. In the present study, the effect of agents that increase intracellular calcium levels by different mechanisms, as well as repercussion on the rate of protein synthesis, including phosphorylation of initiation factor 2alpha subunit, and double-stranded RNA-dependent eIF-2alpha kinase (PKR) activity were analyzed. Glutamate (100 microM) and K+ (60 mM), which increase intracellular calcium levels (the former mostly by the influx of extracellular calcium via voltage-sensitive calcium channels, and the latter by receptor-operated calcium channels), and carbachol (1 mM), as well as glutamate, which mobilizes intracellular calcium from the endoplasmic reticulum via activation of inositol 1,4,5-trisphosphate receptor, did not modify any of the analyzed parameters. Nevertheless, 100 nM ryanodine, which increases intracellular calcium concentration by activating the ryanodine receptor, promoted a significant decrease in the rate of protein synthesis and increased both initiation factor 2alpha subunit phosphorylation and PKR activity. From our results, we can conclude that inhibition of protein synthesis is dependent on the mobilization of intracellular calcium from internal stores. Moreover, they strongly suggest that this inhibition is only promoted when calcium is increased via ryanodine receptor, and possibly by activation of PKR activity.  相似文献   

8.
The eukaryotic protein synthesis initiation factor, eIF-2B, is a multimeric protein of five different subunits termed alpha, beta, gamma, delta and epsilon, which facilitates recycling of a further factor, eIF-2, and is an important control point in the initiation process. In order to investigate the structure and function of eIF-2B, monoclonal antibodies have been prepared to the beta, delta and epsilon subunits of the factor from rabbit reticulocytes. All three antibodies are active in Western blotting, ELISA and immunoprecipitation. The anti-epsilon antibody inhibits both the guanine nucleotide exchange activity of eIF-2B and protein synthesis in the rabbit reticulocyte lysate at the level of initiation. The other two antibodies do not inhibit either guanine nucleotide exchange or protein synthesis. The monoclonal antibodies and a polyclonal anti-(rabbit reticulocyte eIF-2B) serum were used to investigate the subunit size and the antigenic structure of eIF-2B from a variety of rabbit tissues and from a variety of mammalian species. eIF-2B from all rabbit tissues tested was indistinguishable from that prepared from rabbit reticulocytes. Quantitative studies showed substantial variation in the relative concentrations of eIF-2 and eIF-2B between different rabbit tissues. Marked variation in both the sizes of the subunits and their reaction with the antibodies was observed between eIF-2B from rabbit, rat, guinea pig and man.  相似文献   

9.
It is generally considered that the eukaryotic polypeptide chain initiation factor 2 (eIF-2) from rabbit reticulocytes consists of three nonidentical subunits termed alpha, beta, and gamma, in order of increasing molecular weight. However, a recent report [Stringer, E. A., Chaudhuri, A., Valenzuela, D. & Maitra, U. (1980) Proc. Natl. Acad. Sci. USA 77, 3356-3359] suggested that this factor is made up of only two subunits. In this paper we show that limited proteolysis of rabbit reticulocyte eIF-2 leads to loss of the beta subunit. This modified eIF-2 has the same activity as the native factor in promoting ternary (eIF-2.GTP.Met-tRNAi) and 40S (eIF-2.GTP.Met-tRNAi.40S ribosome) initiation complex formation. Like native eIF-2, the protease-treated factor can restore translation in heme-deficient lysates. On the other hand, the treated factor is less stable than the native protein.  相似文献   

10.
11.
The guanine nucleotide exchange activity of eIF2B plays a key regulatory role in the translation initiation phase of protein synthesis. The activity is markedly inhibited when the substrate, i. e. eIF2, is phosphorylated on Ser51 of its alpha-subunit. Genetic studies in yeast implicate the alpha-, beta-, and delta-subunits of eIF2B in mediating the inhibition by substrate phosphorylation. However, the mechanism involved in the inhibition has not been defined biochemically. In the present study, we have coexpressed the five subunits of rat eIF2B in Sf9 cells using the baculovirus system and have purified the recombinant holoprotein to >90% homogeneity. We have also expressed and purified a four-subunit eIF2B complex lacking the alpha-subunit. Both the five- and four-subunit forms of eIF2B exhibit similar rates of guanine nucleotide exchange activity using unphosphorylated eIF2 as substrate. The five-subunit form is inhibited by preincubation with phosphorylated eIF2 (eIF2(alphaP)) and exhibits little exchange activity when eIF2(alphaP) is used as substrate. In contrast, eIF2B lacking the alpha-subunit is insensitive to inhibition by eIF2(alphaP) and is able to exchange guanine nucleotide using eIF2(alphaP) as substrate at a faster rate compared with five-subunit eIF2B. Finally, a double point mutation in the delta-subunit of eIF2B has been identified that results in insensitivity to inhibition by eIF2(alphaP) and exhibits little exchange activity when eIF2(alphaP) is used as substrate. The results provide the first direct biochemical evidence that the alpha- and delta-subunits of eIF2B are involved in mediating the effect of substrate phosphorylation.  相似文献   

12.
Phosphorylation of elongation factor 2 (EF-2) by specific Ca2+/calmodulin-dependent kinase is considered as a possible mechanism of regulation of protein biosynthesis in animal cells at the level of polypeptide chain elongation. In this report we show that wheat germ EF-2 can be intensively phosphorylated by the rabbit reticulocyte EF-2 kinase. Phosphorylation results in inhibition of the activity of plant EF-2 in poly(U)-dependent cell-free translation system. Thus, the activity of EF-2 in plant cells can be potentially regulated by phosphorylation. However, we could not detect endogenous EF-2 kinase activity in wheat germ either in vitro or in vivo. Furthermore, EF-2 kinase activity is not displayed in different organs of wheat and other higher plants.  相似文献   

13.
Human eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA cap structure and interacts with eIF4G, which serves as a scaffold protein for the assembly of eIF4E and eIF4A to form the eIF4F complex. eIF4E is an important modulator of cell growth and proliferation. It is the least abundant component of the translation initiation machinery and its activity is modulated by phosphorylation and interaction with eIF4E-binding proteins (4E-BPs). One strong candidate for the eIF4E kinase is the recently cloned MAPK-activated protein kinase, Mnk1, which phosphorylates eIF4E on its physiological site Ser209 in vitro. Here we report that Mnk1 is associated with the eIF4F complex via its interaction with the C-terminal region of eIF4G. Moreover, the phosphorylation of an eIF4E mutant lacking eIF4G-binding capability is severely impaired in cells. We propose a model whereby, in addition to its role in eIF4F assembly, eIF4G provides a docking site for Mnk1 to phosphorylate eIF4E. We also show that Mnk1 interacts with the C-terminal region of the translational inhibitor p97, an eIF4G-related protein that does not bind eIF4E, raising the possibility that p97 can block phosphorylation of eIF4E by sequestering Mnk1.  相似文献   

14.
Activation of protein synthesis is necessary for the transition of cells from quiescence to proliferation, while withdrawal of growth factors leads to decrease in protein synthesis and transition of normal cells into the resting period. It is shown in this paper that serum growth factors are required for activation of expression of gene encoding translation initiation factor 4E (eIF-4E) in non-transformed NIH 3T3 and Rat-1 fibroblasts but this requirement is lost in C6 glioblastoma, A431 carcinoma and N-myc transformed Rat-1 cells. These data raise the possibility that neoplastic transformation leads to growth factor-independent expression of eIF-4E, thus facilitating continuous growth and replication of transformed cells.  相似文献   

15.
A gene coding for a protein homologous to a translation initiation factor of eukaryotes, eIF5A, was cloned from Methanococcus jannaschii, a hyperthermophile with an optimum growth temperature of 85 degrees C. The protein was overexpressed, purified and crystallized. The crystals were obtained by vapor diffusion method with 8% PEG 4000 as precipitant and belong to space group P4(1)22 with unit cell dimensions a = b = 45.52 A and c = 155.59 A. These crystals diffract to at least 2.2 A resolution.  相似文献   

16.
Videolaryngostroboscopy, psychoacoustic and spectrographic analyses were performed to evaluate vocal function in two groups of male patients who had undergone CO2Laser (n = 23) and laryngofissure cordectomy (n = 21) for the treatment of T1a glottic carcinoma. None of the patients used their voices professionally. This study revealed a good correlation between the anatomical features and voice quality. Psychoacoustic and spectrographic analysis showed that the functional results were significantly worse in the patients treated by laryngofissure (p < 0.003). In this group videolaryngostroboscopy showed a higher rate of compensation in both ventricular folds than shown in the laser-treated group (p < 0.02). The authors conclude that the functional results obtained after cordectomy depend on the various combinations of scarring patterns and compensatory hyperkinesia of the ventricular or vocal folds. The better anatomical and functional results achieved following laser cordectomy may be explained by the fact that such procedures result in better, more rapid healing processes.  相似文献   

17.
Eukaryotic translation initiation factor 3 (eIF3) is a large multisubunit protein complex that plays an essential role in the binding of the initiator methionyl-tRNA and mRNA to the 40S ribosomal subunit to form the 40S initiation complex. cDNAs encoding all the subunits of mammalian eIF3 except the p42 subunit have been cloned in several laboratories. Here we report the cloning and characterization of a human cDNA encoding the p42 subunit of mammalian eIF3. The open reading frame of the cDNA, which encodes a protein of 320 amino acids (calculated Mr35 614) has been expressed in Escherichia coli and the recombinant protein has been purified to homogeneity. The purified protein binds RNA in agreement with the presence of a putative RNA binding motif in the deduced amino acid sequence. The protein shows 33% identity and 53% similarity with the Tif35p subunit (YDR 429C) of yeast eIF3. Transfection experiments demonstrated that polyhistidine-tagged p42 protein, transiently expressed in human U20S cells, was incorporated into endogenous eIF3. Furthermore, eIF3 isolated from transfected cell lysates contains bound eIF5 indicating that a specific physical interaction between eIF5 and eIF3 may play an important role in the function of eIF5 during translation initiation in eukaryotic cells.  相似文献   

18.
The Delta Sxrb interval of the mouse Y chromosome is critical for spermatogenesis and expression of the male-specific minor transplantation antigen H-Y. Several genes have been mapped to this interval and each has a homologue on the X chromosome. Four, Zfy1 , Zfy2 , Ube1y and Dffry , are expressed specifically in the testis and their X homologues are not transcribed from the inactive X chromosome. A further two, Smcy and Uty , are ubiquitously expressed and their X homologues escape X-inactivation. Here we report the identification of another gene from this region of the mouse Y chromosome. It encodes the highly conserved eukaryotic translation initiation factor eIF-2gamma. In the mouse this gene is ubiquitously expressed, has an X chromosome homologue which maps close to Dmd and escapes X-inactivation. The coding regions of the X and Y genes show 86% nucleotide identity and encode putative products with 98% amino acid identity. In humans, the eIF-2gamma structural gene is located on the X chromosome at Xp21 and this also escapes X-inactivation. However, there is no evidence of a Y copy of this gene in humans. We have identified autosomal retroposons of eIF-2gamma in both humans and mice and an additional retroposon on the X chromosome in some mouse strains. Ark blot analysis of eutherian and metatherian genomic DNA indicates that X-Y homologues are present in all species tested except simian primates and kangaroo and that retroposons are common to a wide range of mammals. These results shed light on the evolution of X-Y homologous genes.  相似文献   

19.
BACKGROUND: Eukaryotic initiation factor 4E (eIF-4E) is a 25-kilodalton phosphoprotein that binds specifically to mRNA as the initial step for mRNA translation. An elevated level of eIF4E has been associated with the up-regulation of various protooncogene products. Transfection of cell lines by viral vectors with eIF4E overexpression has resulted in malignant transformation. The objective in this study was twofold: to examine benign and malignant breast specimens for eIF4E expression, and to determine whether eIF4E overexpression may have prognostic potential. METHODS: Western blot analysis was performed on benign and malignant breast specimens using anti-eIF4E rabbit antiserum. Quantification was accomplished by developing blots with nitroblue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate and densitometry. Confirmation of eIF4E overexpression at the cellular level was performed using immunohistologic staining in situ. RESULTS: The authors examined 112 breast specimens for eIF4E protein expression. Of the 52 benign breast specimens examined, none showed eIF4E overexpression. All 12 ductal carcinoma in situ specimens were found to overexpress eIF4E in the intermediate range (mean elevation: 2.5-fold). Of the 48 breast carcinoma specimens examined, all had eIF4E elevation at levels of 3-30-fold (mean: 10.5 +/- 0.9-fold). Charts from 39 patients with Stage I, II, and III breast carcinoma were reviewed. In ten patients with eIF4E overexpression of < sevenfold, there was no recurrence or death from breast carcinoma. In the 29 breast carcinoma patients with > or = 7-fold eIF4E overexpression, 9 patients had breast carcinoma recurrences and 5 had died from disease at last follow-up. The median follow-up in this study was 34.5 months. CONCLUSIONS: Overexpression of eIF4E was observed in malignant breast specimens but not in normal or benign breast tissues. In patients with breast carcinoma, the group with high eIF4E overexpression (> or = 7-fold) experienced a worse clinical outcome (higher recurrences and death) compared with the group with low eIF4E overexpression (< 7-fold).  相似文献   

20.
Regulation of translation initiation plays a critical role in the control of cell growth and division in eukaryotic cells. Translation of many growth regulatory proteins including cyclins depends critically on translation initiation factors because their mRNAs are translated inefficiently. We report that clotrimazole, a potent antiproliferative agent both in vitro and in vivo, inhibits cell growth by interfering with translation initiation. In particular, clotrimazole causes a sustained depletion of intracellular Ca2+ stores, which results in activation of PKR, phosphorylation of eIF2alpha, and thereby in inhibition of protein synthesis at the level of translation initiation. Consequently, clotrimazole preferentially decreases the expression of the growth promoting proteins cyclin A, E and D1, resulting in inhibition of cyclin-dependent kinase activity and blockage of cell cycle in G1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号