首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeolite from fly ash: synthesis and characterization   总被引:4,自引:0,他引:4  
Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc. The synthesis conditions were optimized to obtain highly crystalline zeolite with maximum BET surface area. The maximum surface area of the product was found to be 383 m2/g with high purity. The crystallinity of the prepared zeolite was found to change with fusion temperature and a maximum value was obtained at 823 K. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.  相似文献   

2.
A new adsorbent was developed from waste ash resulting from municipal solid waste and coal co-combustion power plant. The ash was firstly subjected to hydrothermal treatment for zeolite synthesis, and then modified with iron(II) ions by agitation (ISZ) or ultrasonic (UISZ) treatment. The effect of operating factors such as pH, contact time, initial As(V) concentration and adsorbent dosage was investigated and the optimum operating conditions were established. The adsorption capacity for As(V) onto UISZ and ISZ were 13.04 and 5.37 mg g(-1), respectively. The adsorption isotherm data could be well described by Langmuir isotherm model. The optimum initial pH values for As(V) removal were 2.5 and 2.5-10.0 by ISZ and UISZ, respectively. The results indicated that ultrasound treatment scattered the particles of the adsorbent uniformly, which was in favor of impregnating iron ions into pores. Leaching of hazardous elements from the used adsorbents was very low. Accordingly, it is believed that the adsorbents developed in this study are environmentally acceptable and industrially applicable for utilization in arsenic-containing wastewater treatment.  相似文献   

3.
采用不同的改性剂对煤矸石电厂灰渣进行表面改性,将改性后灰渣与聚丙烯(PP)混合均匀,通过挤出注塑得到灰渣-聚丙烯复合材料,并测试其力学性能;利用SEM、FT-IR、DSC等分析方法,研究改性灰渣对复合材料力学性能与结晶行为的影响规律。结果表明,采用硅烷偶联剂SCA1113和SCA503组成的复合偶联剂体系对灰渣改性效果最好,改性后灰渣-PP复合材料较改性前的拉伸强度由25.70 MPa增加至29.58 MPa,弯曲强度由33.60 MPa增加至35.99 MPa,冲击强度由3.04 kJ·m~(-2)增加至3.85 kJ·m~(-2);改性后的灰渣在聚丙烯中起到异相成核的作用,使聚丙烯的结晶温度提高,结晶速率增大,微晶尺寸分布变窄。  相似文献   

4.
Chlorophenols are one of the most important groups of priority pollutants, due to their high toxicity, mutagenicity and carcinogenicity. Although activated carbon has been the preferred choice for the removal of such pollutants from wastewaters, the search for cheaper alternative sorbents became common in the last years. Fly ash, a by-product from coal burning power plants, has a surface composition that may enable the sorption of specific organic compounds. Therefore, this feasibility study presents the optimization of the operating parameters of a fixed-bed column containing fly ash particles, percolated by aqueous solutions of 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) with concentrations of 1 and 100 microg/ml. Both chlorophenols were analysed by gas chromatography with electron capture detection (GC-ECD), after solid-phase microextraction (SPME), with limits of detection (LODs) of 7.28 microg/l for 2,4-DCP and 1.76 microg/l for PCP. Removal efficiencies above 99% were obtained for an initial concentration of 10 microg/ml of chlorophenols. Column saturation was achieved after 7h of continuous operation for 2,4-DCP and 10h for the PCP for feed levels of 10 microg/ml. Fly ash exhibited more affinity towards the sorption of PCP, in comparison to 2,4-DCP.  相似文献   

5.
Biomass, such as wood and straw, is currently used in EU as a renewable energy source for energy production and this application is expected to rise in coming years. Combined heat and power installations produce fly ash, which is considered hazardous waste. The fly ash management issue should be addressed before biomass combustion is considered a truly sustainable technology. The electrodialytic process is a remediation technique able to assist the management of fly ash. For this work, straw and co-combustion of wood ash are briefly characterized and their electrodialytic treatment is carried out under acidic conditions. Straw ashes presented high removal rates for Ca, Cu, Cr and particularly for Cd, which has been reduced to a level bellow the established by Danish regulations. Acidification also induced a high dissolution and a lower pH of the ash. Fly ash from co-combustion of wood presents similarities with wood ash alone. However, further characterization should be carried out before any comparison regarding applicable legislation. Under acidic conditions, the electrodialytic treatment was not effective for the co-combustion wood ash. The heavy metals appeared in the least soluble fraction of this ash and lowering the pH of such an alkaline material does not mean sustainability and may hinder its reuse.  相似文献   

6.
Siliceous mesoporous materials with pores of ordered 2-D hexagonal structure were successfully prepared without hydrothermal treatment from condensation–polymerization of various concentration of quaternary ammonium salt as structure directing agents and silica precursor from the supernatant of coal fly ash (CFA) in the presence of catalyst. The synthesized materials had high surface area of ca. 740 m2 g−1 and pore volume of ca. 0.42 mL g−1. The synthesized material exhibited a narrow size pore distribution and the mean pore diameter as measured by Dollimore–Heal method was about 2.3 nm. The formation of ammonium salt that act as precipitant during the synthesis enable the hydrolysis and co-condensation of the sodium silicate at room temperature.  相似文献   

7.
采用紫外光解方法对垃圾焚烧炉飞灰甲苯抽提液中二恶英物质的分解效率进行实验研究.结果表明,经过520 min后甲苯抽取液中二恶英的分解效率达到97.7%,紫外光解方法是降解垃圾焚烧后飞灰中二恶英的有效方法;在恒定的光源强度下,随着光解时间的增加,二恶英的浓度降低;在同等光解条件下,PCDFs降解效率要高于PCDDs.  相似文献   

8.
In China, flue gases emitted by coal-fired power plants are mainly cleaned using electrostatic precipitators (ESPs). However, based on observations, there is a decrease in the collection efficiency of ESPs in some power plants after burning Jungar coal in Inner Mongolia. In order to find the mechanism of coal fly ash escaping from ESPs, the size distribution, resistivity, and cohesive force of particulate matter samples from Jungar coal-fired power plants in China were measured using a Bahco centrifuge, a dust electrical resistivity test instrument, and a cohesive force test apparatus invented by the authors. Experiments were carried out to determine the chemical composition and current-voltage curve of fly ash under operating ESPs. The Al2O3 content in fly ash was found to reach more than 50%, with the size distribution showing a higher content of PM2.5 and PM10 in high-alumina coal fly ash than in other coal fly ashes. The resistivity of high-alumina coal fly ash was recorded at over 1012 Ω cm, but this did not result in a clear back corona. The cohesive force of high-alumina coal fly ash was very little. It was sensitive to smoke speed in the electric field, facilitating dust re-entrainment.  相似文献   

9.
Na-A and -X zeolites were synthesized from waste solutions in conversion of coal fly ash (Fa) to zeolite. The amorphous SiO2 and Al2O3 of Fa were completely dissolved to form Po, Pt, and Pc type zeolites in NaOH solutions at 85°C. Only 24% of Si4+ eluted from Fa were converted to the zeolites and the remaining waste solutions contained high Si4+ concentrations. When molar ratio SiO2/Al2O3 of the waste solutions was modified at 1.0≤SiO2/Al2O3≤2.0 by addition of NaOH-NaAlO2 solutions and the solutions were agied at 85°C, a single phase of Na-A zeolite was formed. The Na-X zeolite was formed at SiO2/Al2O3≥2.5 and its crystallinity was increased with increasing the SiO2/Al2O3 ratio, whereas the crystallinity of Na-A zeolite was decreased. At SiO2/Al2O3=7.3, a single phase of Na-X zeolite was produced.  相似文献   

10.
The phase composition of magnetic microspheres isolated from Ekibastuz coal fly ash in six narrow size ranges is determined by Mössbauer spectroscopy. The major phase in the microspheres is nonstoichiometric, cation-substituted (Al, Mg, and Ti) magnetite. Their magnetic properties are shown to depend on the Fe content and cation distribution over the spinel sites.Translated from Neorganicheskie Materialy, Vol. 41, No. 1, 2005, pp. 54–63.Original Russian Text Copyright © 2005 by Bayukov, N. Anshits, Balaev, Sharonova, Rabchevskii, Petrov, A. Anshits.  相似文献   

11.
This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700 °C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24 h then a sintering at 800 °C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc…). The average pore diameter of the active layer was 0.25 μm and the thickness was around 20 μm. The membrane permeability was 475 l/h m2 bar.This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 l h−1 m−2). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively.  相似文献   

12.
The present study reports a green synthesis method for preparing pure (free of fly ash) and ordered MCM-41 materials from coal fly ash at room temperature (25 degrees C) during 24 h of reaction. It was shown that the impurities in the coal fly ash were not detrimental to the formation of MCM-41 at the tested conditions. The influence of initial synthesis pH on material properties of calcined MCM-41 samples was investigated by various techniques such as XRF, XPS, XRD, FTIR, DR-UV-vis, solid state NMR, N2 physisorption, TG-DTA, SEM and TEM. The experimental results showed that the amount of trace elements such as Al, Na, Ti and Fe incorporated into the sample increased with synthesis pH value. More aluminum species were incorporated with tetrahedral coordination in the framework under a high pH value. The particle size of the sample decreased with the synthesis pH value. Samples synthesized at high pH values had a larger pore size and were more hydrothermally stable than those at low pH values. From thermal analysis, it was observed that the synthesized MCM-41 samples showed a high thermal stability. These properties made the synthesized MCM-41 suitable for further processing into more useful materials in a wide range of applications.  相似文献   

13.
One-dimensional structures are the smallest dimension structures that represent a unique system for analyzing phenomena at the Nanoscale. Nanowires, which can be used for space confined transport phenomena and enhanced optical properties, are believed to play significant role in the function and integration of Nano electronics and Nano optoelectronics devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by various complex techniques but the demand of upcoming future technology is to synthesize large scale 1D nanostructures with simple and efficient cost effective methods. With this view, in the present study, large scale amorphous silica nanowires (SiO2 NWs) were synthesized from rice husk ash using Fe2O3 assisted hydrothermal method and characterizations of these nanowires along with rice husk ash (RHA) containing porous silica, were done using various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis spectroscopy and photoluminescence (PL). The structural study of silica nanowires were studied using XRD, indicating the amorphous phases of silica in both RHA as well as nanowires. The chemical composition along with symmetric or anti-symmetric starching bonds of amorphous SiO2 NWs and RHA was confirmed using FTIR. The morphological study was done using SEM and TEM. The SiO2 NWs so obtained have diameter in the range from 15 to 35 nm and length about 0.5 µm. In optical study, the enhanced band gap of amorphous SiO2 NWs as compared to RHA was observed using UV–Vis spectroscopy. PL spectroscopy shows strong blue light emission by silica nanowires as compare to RHA. This study opens up new areas for research to modulate optoelectronic properties of SiO2 nanowires for the novel device application.  相似文献   

14.
Municipal solid waste (MSW) incinerator (MSWI) bottom ash and fly ash were used as landfill cover or were co-disposed with MSW to measure their potential metal-releasing and acid-neutralizing capacity (ANC) in landfill sites. Five lysimeters (height 1.2m, diameter 0.2m), simulating landfill conditions, were used in the experiment. Four contained either bottom ash (BA) or fly ash (FA) with BA:MSW ratios of 100 and 200 g L(-1) and FA:MSW ratios of 10 and 20 g L(-1), and the fifth was the control, which contained no ash. The lysimeters were arranged so as to contain four layers, with BA or FA placed on top of MSW within each layer. Each lysimeter was recirculated with 100mL leachate using peristaltic pumps, and 100mL of the leachate was collected weekly to measure the soluble metal concentrations. The results showed that the concentrations of soluble alkali metals measured in the leachate were in the order Ca>K>Na>Mg. In addition, the concentrations of soluble alkali metals of Ca and K collected from the lysimeters containing FA were found to be higher than the concentrations from the lysimeters containing BA. The concentrations of heavy metals (Cd, Cr, Cu, Ni, and Zn) were found to be <1 mg L(-1) except for Pb, which reached 2 mg L(-1). These results suggest that for alkali metals there might be an ANC consistent with the results of an acid titration curve, which would provide suitable conditions for anaerobic digestion of the MSW in the landfill. Furthermore, heavy metals and trace metals were found in concentrations, which were too low to exert inhibitory effects on anaerobic digestion, and thus they could serve as micronutrients to exert beneficial rather than detrimental effects on landfill biostabilization.  相似文献   

15.
Paper sludge ash was partially converted into zeolites by reaction with 3M NaOH solution at 90 degrees C for 24 h. The paper sludge ash had a low abundance of Si and significant Ca content, due to the presence of calcite that was used as a paper filler. Diatomite was added to the NaOH solution to increase its Si content in order to synthesize zeolites with high cation exchange capacity. Diatomite residue was filtered from solution before addition of ash. The original ash without addition of diatomite yielded hydroxysodalite with a cation exchange capacity ca. 50 cmol/kg. Addition of Si to the solution yielded Na-P1 (zeolite-P) with a higher cation exchange capacity (ca. 130 cmol/kg). The observed concentrations of Si and Al in the solution during the reaction explain the crystallization of these two phases. The reaction products were tested for their capacity for PO(4)(3-) removal from solution as a function of Ca(2+) content, suggesting the formation of an insoluble Ca-phosphate salt. The product with Na-P1 exhibits the ability to remove NH(4)(+) as well as PO(4)(3-) from solution in concentrations sufficient for application in water purification. Both NH(4)(+) and PO(4)(3-) removal showed little variation with pH between 5 and 9. Alternative processing methods of zeolite synthesis, including the addition of ash to an unfiltered Si-NaOH solution and addition of a dry ash/diatomite mixture to NaOH solution, were tested. The third process yielded materials with lower cation exchange capacity due to formation of hydroxysodalite. The second process results in a product with relatively high cation exchange capacity, and reduces the number of processing steps necessary for zeolite synthesis.  相似文献   

16.
Different types of municipal solid waste incinerator (MSWI) fly and bottom ash were extracted by TCLP and PBET procedures. The biotoxicity of the leachate of fly ash and bottom ash was evaluated by Vibrio fischeri light inhibition test. The results indicate the following: (1) The optimal solid/liquid ratio was 1:100 for PBET extraction because it had the highest Pb and Cu extractable mass from MSWI fly ash. (2) The extractable metal mass from both fly ash and bottom ash by PBET procedure was significantly higher than that by TCLP procedure. (3) The metal concentrations of fly ash leachate from a fluidized bed incinerator was lower than that from mass-burning and mass-burning combined with rotary kiln incinerator. (4) The TCLP and PBET leachate from all MSWI fly ash samples showed biotoxicity. Even though bottom ash is regarded as a non-hazardous material, its TCLP and PBET leachate also showed biotoxicity. The pH significantly influenced the biotoxicity of leachate.  相似文献   

17.
18.
Kaliophilite was synthesized by fusion method using fly ash as starting material. In this method, at first, alkaline fusion of fly ash with KOH occurs, followed by hydrothermal treatment in KOH medium. Scanning electron microscopy (SEM) observations revealed that the synthesized kaliophilite (S-KAL) was a plate-like crystal. X-ray diffraction (XRD) results showed three characteristic diffraction peaks located at 2? = 19·56°, 20·78° and 28·71°, respectively. The thermal analysis indicated that the S-KAL had remarkable thermal stability when heated to 1000°C. Leaching test confirmed the high retention rate of potassium for S-KAL in boiling water for 10 h.  相似文献   

19.
Vitrification of fly ash from municipal solid waste incinerator   总被引:34,自引:0,他引:34  
Fly ash from municipal solid wastes (MSW) incinerators in Korea contains a large amount of toxic materials and requires pertinent treatments. However, since fly ash in Korea has a high chlorine concentration, it is difficult to apply cementation and chemical treatment techniques. In this study, we report the vitrification of fly ash along with the properties of the glasses and leaching characteristics of heavy metal ions.Fly ash can be vitrified by melting at 1500 degrees C for 30 min with the addition of >5 wt.% of SiO2. Glasses showed Vickers hardness of 4000-5000 MPa, bending strength of 60-90 MPa and indentation fracture toughness of approximately 0.9 MPa m(1/2). Glasses also showed the excellent resistance against leaching of heavy metal ions with Cd2+ <0.04 ppm, Cr3+ <0.02 ppm, Cu2+ <0.04 ppm and Pb2+ <0.2 ppm. These results indicate that the vitrification technique is effective for the stabilization and recycling of toxic incinerator fly ash.  相似文献   

20.
Formation process of Na-X zeolites from coal fly ash   总被引:2,自引:0,他引:2  
In order to synthesize Na-X zeolite from coal fly ash (Fa), Fa was pretreated under stirring condition at various temperatures of 20–50°C for 72 h and then aged at 85°C for a given period with NaOH solutions. The resulting materials were characterized by various means. When Fa was aged for 72 h without pretreatment, species P were formed. As the pretreating temperature raised from 20 to 50°C, the degree of crystallinity of faujasite increased, while that of species P decreased. The faujasite species formed was identified as Na-X zeolite with molar ratio SiO2/Al2O3 = 2.4. When Fa was pretreated at 50°C and aged for 60 h, the only species formed was Na-X zeolite. Increasing the pretreating temperature up to 50°C results in the increase of Si4+ and Al3+ concentrations in the treating solution by dissolution of amorphous material in Fa. With the conditions used, the crystalline phase, such as -quartz and mullite, was poorly dissolved during the treatment. Hence, the higher pretreating temperature would give the uniform nucleation and crystal growth of Na-X zeolite during the aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号